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1. Motivation
DAGs (directed acyclic graphs)[1]
The causal relationships between variables can be encoded as DAG:
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Such a DAG implies a probability distribution P that can be factorized
on nodes given their parents to

P(v) =
∏n

j=1
P(xj|paj)

Only the distribution itself is learnable from observed data, so
learning algorithms return multiple DAGs that encode the same
distribution and form an equivalence class [Di]. They correspond to
Complete Partial DAGs (CPDAGs)[2]
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CPDAG: a mixed graph C representing
an entire equivalence class CE(C) = [Di].
All Di have the same directed edges
as C and an directed edge for every
undirected edge.

Chain Graphs (CGs)[3] CGs generalize CPDAGs and are mixed graphs
that do not contain a semicycle. CGs that are not complete encode a
subset CE(G) ⊂ [Di], which might be empty as CE(G) = ∅.
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Restricted Chain Graphs (RCGs)
are chordal and do not contain
A→ B− C. These conditions ensure
that CE(R) 6= ∅ for every RCGR.
Every CPDAG and every DAG
is an RCG. And for every CG G with
CE(G) 6= ∅, we can find an RCGRwith
CE(R) = CE(G) efficiently.

2. Covariate Adjustment

Given a causal DAG the causal effect of a perfect experiment that sets
the variables X to x can be calculated with the do-operator as

P(y|do(x)) =
∏

Xj∈V\X
P(xj|paj).

For certain sets Z this causal effect can also be calculated as

P(y|do(x)) =
∑

z
P(y|x, z)P(z)

directly from the data and mostly independently of the DAG itself.
These sets are called adjustment [1].
From a DAG it can be decided, if a given set is an adjustment set by:

Adjustment Criterion (AC) for DAGs [4]: LetD = (V, E) be a DAG
and let X,Y,Z be pairwise disjoint subsets of V. The set Z satisfies the
adjustment criterion relative to (X,Y) if
1. no element in Z is a descendant of anyW ∈ V \ Xwhich lies on a

proper causal path from X to Y and
2. all proper non-causal paths from X to Y are blocked by Z.

For a distribution described by a CG G a set Z can only be an
adjustment, if it is an adjustment in every represented DAG
D ∈ CE(G). Testing the above criterion for each of these DAGs is not
feasible, so we need a new criterion that can be tested directly on G.

3. Constructive Back-Door Criterion for (R)CGs

The second condition of the AC depends on “all non-causal paths.”
Even in DAGs there can be an exponential number of these paths, so
the AC does not lead directly to efficient algorithms. However, after
removing the first directed edge of every directed path, this condition
becomes equivalent to d-separation in a new graph:
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We show that this reduction can be generalized to RCGs:
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We call this graph a proper back-door graph and obtain the following
simpler criterion for RCGs:
Constructive Back-Door Criterion (CBC): LetR = (V, E) be an RCG
and let X,Y,Z be pairwise disjoint subsets of V. The set Z satisfies the
CBC relative to (X,Y) if
1. no element in Z is a possible descendant of anyW ∈ V \ Xwhich

lies on a proper possible causal path from X to Y and
2. all definite status paths in the proper back-door graph are blocked

by Z.
If an adjustment set exists, the proper back-door graph is also an RCG.

4. Algorithms

The d-connected paths of DAGs generalize to RCGs by also allowing
passing through A← B− C, A− B→ C, and A− B− C.
This leads to algorithms for these problems in an RCG (DAG, CPDAG):

Testing or finding an sep. or adj. set Z in linear time O(n +m)
Testing or finding a minimal set Z O(n2) using a moral graph
Testing or finding a minimum set Z O(n3) using max-flow
Enumerating all set Z,Z′,Z′′, . . . delayed O(nm)
Enumerating all minimal set Z . . . delayed O(n3)
satisfying the constraint I ⊆ Z ⊆ R for any given node sets I,R.

n andm denote the number of nodes and edges in the graph.

In an arbitrary chain graph G we can solve these problems after
converting it to an RCGR in O(n4) by replacing every occurrence of
A→ B− C with A→ B→ C. If this replacement is not unique
determined, i.e. if there is a Dwith B− C ← D, then CE(G) = ∅.

5. Conclusion
Problems concerning adjustment sets in chain graphs can be reduced
to d-separation problems in RCGs, a new class including DAGs and
CPDAGs. These problems can be solved by efficient and easily
implementable algorithms [http://www.dagitty.net].
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