
From the Institute of Theoretical Computer Science
of the University of Lübeck

Director: Prof. Dr. math. K. Rüdiger Reischuk

Algorithmics of Identifying Causal Effects
in Graphical Models

Dissertation
for the Fulfillment

of Requirements for
the Doctoral Degree

of the University of Lübeck
from the Department of Computer Sciences

Submitted by
Benito van der Zander

from Düsseldorf

Lübeck, 2020

First referee Prof. Dr. Maciej Liśkiewicz
Second referee Prof. Dr. Ralf Möller

Date of oral examination 2020-08-31

Approved for printing

Abstract

Graphical causal models represent the relationships between random variables and can
predict the outcome of experiments from observed data. They are an important tool in fields like
economics, social sciences, and epidemiology, where randomized experiments are impossible
or unethically to perform, but a vast amount of observed data is available. Although many
theoretical results are known, for many tasks involving graphical causal models no efficient
algorithms are known, hindering the use of these models in artificial intelligence and for the
analysis of big data.

In this thesis, we present efficient algorithms to predict the causal effect of experiments from
a graphical causal model and observed data. We investigate two separate approaches for this
purpose: covariate adjustment and instrumental variables.

We show that the sound and complete adjustment criterion by Shpitser et al. for DAGs
becomes equivalent to a d-separation test – a conditional independence test – after a simple
graph modification. From this, we derive efficient algorithms to verify, construct, and enumerate
adjustment sets as well as minimal and minimum adjustment sets.

We generalize the adjustment criterion from DAGs to maximal ancestral graphs (MAGs),
which represent ancestral relationships between variables and remain valid when the data is
confounded or biased by unknown variables. We also generalize it to completed partially
directed acyclic graphs (CPDAGs) and restricted chain graphs (RCGs), which represent an
entire (sub)class of Markov equivalent DAGs at once. This allows our algorithms to be used for
incomplete models that do not represent all variables or models in which the direction of causal
influences is not known.

Prior to developing the algorithms for adjustment sets, we develop the corresponding
algorithms for separating sets. Thereby we improve the runtime of the previously best-known
algorithms for DAGs and generalize them to MAGs, CPDAGs, and RCGs.

Afterward, we study the algorithmics of instrumental variables (IVs). IVs are frequently
used with linear structural equation models (SEMs) to estimate the causal effect under the
assumption that all influences in the model are linear. This additional assumption allows one to
calculate causal effects that cannot be calculated by adjustment or in non-linear models. We
show that it is NP-complete to decide whether a given variable is a conditional IV. Nevertheless,
we present an efficient algorithm to find at least one conditional IV if one exists in a given model.
Furthermore, we investigate special cases in which conditional IVs are also efficiently verifiable.

We obtain similar results for instrumental sets, a generalization of instrumental variables.
It is NP-complete to verify a given generalized instrumental set, but certain simple cases of
instrumental sets can be found efficiently.

i

Zusammenfassung

Graphische, kausale Modelle repräsentieren Zufallsvariablen mitsamt ihren gegenseitigen
Einflüssen als Graphen, und können die Ergebnisse von Experimenten aus rein beobachteten
Daten vorhersagen. Diese Modelle haben große Bedeutung in Forschungsbereichen wie Epidemi-
ologie, der Wirtschaftswissenschaft und der Sozialwissenschaft, in denen Zufallsexperimente
unmöglich sind oder unethisch wären, jedoch große Datenmengen zur Verfügung stehen. Ob-
wohl graphische, kausale Modelle schon intensiv erforscht wurden, sind die meisten Ergebnisse
theoretischer Natur und es fehlen Algorithmen, um die Modelle in künstlicher Intelligenz oder
zur Analyse von Big Data anzuwenden.

In dieser Arbeit entwickeln wir effiziente Algorithmen, um die kausalen Effekte von Ex-
perimenten aus gegebenen beobachteten Daten und dem dazugehörigen graphischen kausalen
Model zu berechnen. Wir verwenden dazu zwei unterschiedliche Ansätze: das Adjustieren für
Störfaktoren und die Instrumentvariablenmethode.

Wir zeigen, dass das korrekte, vollständige Adjustierungskriterium für DAGs von Shpitser
et al. äquivalent zu einem d-Separation-Test in einem modifizierten DAG ist. Daraus folgt, dass
d-Separationsalgorithmen erkennen können, welche Variablen für die Adjustierung geeignet
sind, und wir erhalten effiziente Algorithmen, um diese Variablen zu finden und aufzulisten. Wir
entwickeln weiterhin Algorithmen, um minimale und kleinstmögliche Mengen von Variablen
für die Adjustierung zu finden.

Wir verallgemeinern das Adjustierungskriterium von DAGs zu maximalen Ahnengraphen
(MAGs), die Vorfahrrelationen statt Eltern-Kind-Relationen kodieren und deshalb auch gültig
bleiben, wenn die Daten von unbekannten Störfaktoren beeinflusst werden, solange diese Stör-
faktoren die Vorfahrrelationen nicht beeinflussen. Weiterhin verallgemeinern wir das Kriterium
zu vollständigen teilweise gerichteten azyklischen Graphen (CPDAGs) und eingeschränkten
Kettengraphen (RCGs), welche eine (Teil-)Klasse von Markov äquivalenten DAGs repräsen-
tieren. Daraus folgern wir, dass unsere Algorithmen auch gültige Ergebnisse liefern, wenn
das kausale Modell nicht vollständig bekannt ist oder die Richtung von manchen kausalen
Einflüssen unbekannt ist.

Eine nötige Grundlage für unsere Adjustierungsalgorithmen sind effiziente Algorithmen
für d-Separation. Daher verbessern wir zu Beginn der Arbeit die Laufzeit der bekannten
Separationsalgorithmen für DAGs und generalisieren sie zu MAGs, CPDAGs und RCGs.

Schließlich untersuchen wir die Instrumentvariablenmethode. Instrumentvariablen wer-
den in linearen Gleichungsmodellen (SEMs) verwendet, um den kausalen Effekt unter der
Annahme, dass alle Effekte linear sind, zu bestimmen. Instrumentvariablen können kausale
Effekte bestimmen, die weder durch Adjustierung noch in nicht linearen Modellen bestimmt
werden können. Wir zeigen, dass es ein NP-vollständiges Problem ist zu entscheiden, ob eine
gegebene Variable eine bedingte Instrumentvariable ist. Trotzdem entwickeln wir einen effizien-
ten Algorithmus, der eine bedingte Instrumentvariable findet, falls mindestens eine bedingte
Instrumentvariable im Graphen existiert. Weiterhin untersuchen wir eine Einschränkung von
bedingten Instrumentvariablen, die auch effizient zu erkennen sind.

Ähnliche Ergebnisse bekommen wir für Instrumentvariablenmengen, eine Generalisierung
von Instrumentvariablen. Es ist NP-vollständig zu entscheiden, ob eine Menge von Variablen
eine Instrumentvariablenmenge ist. Jedoch existieren Spezialfälle, in denen eine Instrumentvari-
ablenmenge effizient gefunden werden kann.

ii

CONTENTS

Contents

1 Introduction 1
1.1 Publications . 7
1.2 Structure of this Thesis . 8

2 Preliminaries: Causal Graphical Models 9
2.1 General Background and Notation . 9
2.2 Classes of Graphical Models . 12
2.3 Do-operator and Causal Effects . 16

3 Separation: An Algorithmic Framework 19
3.1 Properties of Walks and Paths . 21

3.1.1 Almost Definite Status . 22
3.1.2 Equivalences . 23
3.1.3 Augmentation and Moralization . 26

3.2 Algorithms for Separators . 27
3.2.1 Reachability Algorithm . 28
3.2.2 Testing Separators . 29
3.2.3 Finding Separators . 29
3.2.4 Enumerating All Separators . 31

3.3 Algorithms for Minimal and Minimum Separators 31
3.3.1 Weak Minimality versus Strong Minimality 31
3.3.2 Properties of Minimal Separators . 33
3.3.3 Testing Minimal Separators . 34
3.3.4 Finding Weakly-Minimal Separators 36
3.3.5 The Hardness of Strong-Minimality 37
3.3.6 Augmentation and Moralization . 39
3.3.7 Enumerating Weakly-Minimal Separators 39
3.3.8 Finding Minimum Separators . 41

3.4 Relating Chain Graphs and Restricted Chain Graphs 42
3.4.1 Recognizing Restricted Chain Graphs 42
3.4.2 Reducing a Chain Graph to a Restricted Chain Graph 43

3.5 Discussion . 44

4 Identification via Covariate Adjustment 45
4.1 Preliminaries . 46
4.2 Adjustment in DAGs . 47
4.3 Adjustment in MAGs . 49

4.3.1 Adjustment Amenability . 50

iii

CONTENTS

4.3.2 Auxiliary Lemmas . 50
4.3.3 Adjustment Criterion for MAGs . 53
4.3.4 The Class of the Back-Door Graph . 56

4.4 Adjustment in RCGs . 56
4.4.1 Properties of the Proper Back-Door Graph 60

4.5 Adjustment in CGs . 61
4.6 The Final CBC . 61
4.7 Variations of the CBC . 62
4.8 The Algorithmic Framework . 63

4.8.1 Testing Adjustment Amenability . 64
4.8.2 Testing Adjustments and Minimal Adjustments 65
4.8.3 Finding Adjustments and Minimal Adjustments 65

4.9 Discussion and Related Work . 66

5 A Comparison of Non-Parametric Identification Methods 71
5.1 Beyond Covariate Adjustment in DAGs . 71

5.1.1 Identification by plain formulas . 72
5.1.2 Identification by generalized parent adjustment 73
5.1.3 Identification when X and Y partition V 74

5.2 Empirical Analysis of Identifiability by Adjustment in DAGs 75
5.2.1 Instance Generation . 75
5.2.2 Algorithms . 76
5.2.3 Results . 77

5.3 Empirical Analysis of Identifiability by Adjustment in MAGs 85
5.4 Empirical Analysis of Identifiability by Adjustment in RCGs 86
5.5 Discussion . 94

6 Identification via Instrumental Variables in SEMs 95
6.1 Preliminaries . 97
6.2 Single Instrumental Variables . 99

6.2.1 Instrumental Variables . 100
6.2.2 Conditional Instruments . 100
6.2.3 Instruments Relative to the Total Effect 100
6.2.4 Ancestral Instruments . 101
6.2.5 Active Instruments . 103

6.3 Algorithmics of Instrumental Variables . 103
6.3.1 Nearest Separators . 105
6.3.2 Finding ancestral and conditional instrumental variables 108
6.3.3 Instrumental Variables Relative to the Total Effect 109
6.3.4 Instrumentalization is NP-hard in general 110
6.3.5 Testing instruments in completely unobserved graphs 113
6.3.6 Finding instruments in observed graphs 113
6.3.7 Enumerating Instrumental Variables 116

6.4 Instrumental Sets . 117
6.4.1 Simple Instrumental Sets . 117
6.4.2 Generalized Instrumental Sets . 118
6.4.3 Simple Conditional Instrumental Sets 119

iv

CONTENTS

6.4.4 Singleton Sets as Instrumental Variables 119
6.5 Algorithmics of Instrumental Sets . 120

6.5.1 Finding Incompatible Paths via Flows 121
6.5.2 Testing and Finding Simple Conditional Instruments 122
6.5.3 Testing and Finding Simple Instruments 124
6.5.4 Hardness of Testing Generalized Instrumental Sets 126
6.5.5 Testing and Finding Generalized Instrumental Sets with a Pebble Game 128

6.6 Discussion . 133

7 Discussion 135

8 Bibliography 137

A Further experimental results 143

B Further Classes of Graphical Models 147

C Essential Paths and Nearest Separators 149

D Listings 153
List of Tables . 153
List of Figures . 154
List of Algorithms . 155
Index . 156

E Curriculum Vitae 159

v

1 Introduction

Many important questions like “Does smoking cause lung cancer?”, “How can we prevent
diabetes?”, “Is global climate change caused by man-made carbon dioxide emissions?”, or “Do
lower taxes lead to more economic growth?” cannot be answered by randomized controlled trials.
That is because the required trials would be unethically, too expensive, or flat-out impossible. For
example, in a study of smoking, it would be unacceptable to expose a treatment group consisting
of randomly chosen smokers and non-smokers to a potential carcinogen. Econometrists cannot
change the taxes in random countries, and climatologists do not have multiple Earths to compare
the effects of different levels of carbon dioxide emissions.

Hence, such questions need to be answered from observed data. Graphical causal models
are a popular method to obtain these answers in fields like econometrics [AP08; Imb14], social
sciences [Elw13], and epidemiology [RGL08]. Such models represent the mechanisms that are
assumed to generate an observed joint probability distribution. They reveal correlations and
conditionally independence relationships between the variables of the model and predict how the
relationships would be changed by an intervention that changes some variables experimentally.
Directed acyclic graphs (DAGs) are a standard model that uses directed edges between nodes to
represent cause and effect [Pea09].

In this thesis, we study the identification of the causal effect of variables X on variables Y,
i.e., predicting the outcome of an experiment changing X from the graphical model and observed
data. An experiment like a randomized controlled trial investigates the effect of variables X
on variables Y by performing an intervention that assigns fixed values to the variables X and
then measures the resulting changes in the variables Y. If we only have access to the graphical
model and observed data, we cannot change any variables and need to rely on the mechanism
encoded in the graphical model to predict the outcome of the intervention. We will focus on two
most prominent methods of identifying the causal effect: covariate adjustment and instrumental
variables.

For example, the model in Figure 1.1 can be used to study the influence of education
(represented as variable LE) on diabetes risk (D) in the hope of preventing diabetes by improving
education [TL11; ZLT19; RGL08, Chapter 12]. The model assumes there are three direct causes
of diabetes risk: the genetic risk of the mother to develop diabetes (MR), her actually developing
diabetes (MD), and the level of education (LE). Neither MR nor MD affect LE. A fourth variable,
family income (FI), is assumed to affect MD and LE, but to have no direct effect on MR and D.
It affects D through its influence on MD indirectly.

In a randomized controlled trial, one could assign random levels of education to different
groups of people and measure the resulting probability that they develop diabetes. This probabil-
ity is also called the total causal effect of LE on D. We denote it as P (D = d | do(LE = le)),

1

INTRODUCTION

(a) (b) (c) (d)
FI MR

MD

LE D

FI MR

MD

LE D

FI MR

MD

LE D

FI MR

MD

LE D

Figure 1.1: Causal DAG [TL11; ZLT19; RGL08, Chapter 12] describing the effect of low
education (LE) on diabetes risk (D) with the covariates: family income (FI), mother’s genetic
risk to develop diabetes (MR), and mother’s diabetes (MD). In cases (a) resp. (b) the biasing
path resulting from no adjustment resp. adjusting MD is highlighted. Cases (c) and (d) show
possible adjustments that prevent all bias between LE and D.

meaning the probability that variable D takes value d after an experimental intervention that
forces variable LE to have value le.

Such an intervention removes all influences of other variables on LE as if there were no
edges into LE in the graphical model. Thus, the causal effect of LE on D can predict whether
the risk of diabetes is lowered by improving education.

Identifying causal effects via adjustment sets. In an observational study, we only know
how many people exist for various combinations of variable values, i.e., the joint probability
distribution P of all variables. From the joint distribution, one can obtain the conditional
probability P (D = d | LE = le), the probability that variable D takes value d given that
variable LE has value le. Observing that people with low education are more likely to have
diabetes than people with high education might imply that improving education could prevent
diabetes.

However, the conditional probability is not the same as the causal effect. If some other
factors are causing both low education and diabetes, these factors influence the conditional
probability, but they are not supposed to influence the causal effect. Indeed, the model includes
such a confounding factor: the family income, which affects LE as well as MD and thus,
indirectly, D. The DAG encodes this indirect influence as biasing path LE← FI →MD→ D,
which is highlighted in Figure 1.1 (a). In a randomized trial, there would be no influence of FI
on LE, so, if one would use the conditional probability to estimate the causal effect of LE on D,
the estimate would be biased by this influence.

To remove this bias we adjust for MD, which means to sum the conditional probability P (D |
LE,MD) over all possible values of MD separately as

∑
md P (D | LE,MD = md)P (MD =

md). Since the value of MD is fixed, MD is no longer affected by FI, so the biasing path LE
← FI → MD → D is blocked. However, the adjustment opens another biasing path LE ←
FI → MD ← MR → D as highlighted in Figure 1.1 (b). This path is not open without the
adjustment for MD since MD is an effect of both FI and MR, so FI and MR cannot influence
each other through MD. However, FI and MR can become correlated given a fixed value of
MD. For instance, if the income is high and the mother has diabetes, it is more likely that she
has a high genetic risk. If the income is low and she does not have diabetes, one can conclude
that she has a low genetic risk. This path can be blocked by also adjusting for MR as shown in
Figure 1.1 (c)1.

1A path is blocked if one adjusts for a variable that is a cause of one of its adjacent nodes on the path. Since MD

2

Thus, all biasing paths are blocked by adjusting both MD and MR, and we can calculate the
causal effect as

P (D = d | do(LE = le))

=
∑

md,mr

P (D = d | LE = le,MD = md,MR = mr)P (MD = md,MR = mr).

Rather than adjusting for MR and MD, one can also adjust for FI alone as shown in
Figure 1.1 (d). This also removes all bias since all biasing paths between LE and D contain
FI as a cause. So far, we have assumed that all variables are observed. It may happen that
some variables U are not observed, and we do not know their probability P (U). If FI was
unobserved, e.g., because it was not recorded during the study, the only possible adjustment
would be MR and MD. If MR was unobserved, e.g., because the researchers did not have the
equipment to measure genetic risk, we must adjust at FI. If both FI and MR were unobserved, it
would be impossible to calculate the causal effect by adjustment.

This example shows that choosing a set of variables for adjustment is not an easy task. We
will investigate the following problem: given a causal structure as a DAG and sets of variables
X and Y, find a set of variables Z such that for all probability distributions compatible with
the DAG, P (Y = y | do(X = x)) =

∑
z P (Y = y | X = x,Z = z)P (Z = z) holds. A

set Z that satisfies this equation is called an adjustment set. Since there are infinitely many
probability distributions compatible with the DAG, we want to find the set Z without reasoning
about probability distributions by only considering properties of the DAG. We describe this
problem more formally in Section 2.3 and Chapter 4.

Pearl’s back-door criterion [Pea93; Pea09] is the standard method of choosing an adjustment
set Z in DAGs. However, his criterion is not complete and might falsely tell us that adjustment
is not possible in a certain model. Shpitser et al. have discovered a sound and complete criterion
[SVR10], i.e., a criterion that is satisfied by a set of variables Z if and only if Z is an adjustment
set. A crucial condition of their criterion is that Z blocks all biasing paths of a certain kind.
This condition is difficult to handle in algorithms since a straightforward implementation would
enumerate all biasing paths and test whether each path is blocked, which requires an exponential
amount of time.

We will derive a constructive back-door criterion from Shpitser’s criterion, which changes
the condition from blocking biasing paths to blocking all paths in a new DAG obtained by
removing the first edge of causal (i.e., directed) paths from the nodes X to Y. All causal paths
contain such an edge, so all paths remaining in the new DAG are biasing. Nodes on causal paths
can be calculated as the intersection of ancestors and descendants, so the edges can be removed
efficiently without enumerating causal paths.

Determining whether all paths are blocked in a DAG is simpler than determining whether
all biasing paths are blocked since the algorithms only need to store which nodes are reachable
by any path rather than tracking the paths themselves. Reachability searches are a standard
problem and there exist many algorithms to solve them in causal DAGs [ADC96; Sha98; TPP98;
TL11]. These algorithms solve tasks like deciding if all paths are blocked, finding a set Z that
blocks all paths, finding a minimal or minimum set Z, or enumerating all such sets. We will
generalize these algorithms to allow additional constraints like excluding certain nodes, which
is a necessary constraint when using the algorithms for adjustment sets. We will also improve
the runtime of finding minimal sets.

is an effect on the path in Figure 1.1 (b), the path is not blocked by MD.

3

INTRODUCTION

Adjustment sets in generalized graphical causal models. Many other factors besides the
variables in Figure 1.1 might lead to diabetes, like a bad diet or a lack of exercise. Causal models
encoded as a DAG are only valid if all relevant variables are included in the graph, which is
called the assumption of causal sufficiency. But one can see that an adjustment for MR and MD
would remain valid if another variable (confounder) is inserted as a common cause of MR and D
or of LE and MD to the model. It does not remain valid if a confounder between FI and D or
MD and D is added. Adjusting FI is more stable since it remains valid in all these cases except
in the case of a confounder between LE and MD.

Ancestral graph models have been designed to handle such additional unknown variables.
These models encode ancestral relationships and conclusions drawn from them are valid for an
infinite number of DAGs that have the same ancestral relationships [RS02]. For example, the
ancestral relationships in Figure 1.1 imply that FI is an ancestor of D, but not of MR. So if we
treat the graph of the figure as an ancestral graph, it also represents every DAG that extends the
graph with additional confounders as common causes of two variables. But extending it with
a variable that is a child of FI and a parent of MR is not allowed, since such a variable would
make FI an ancestor of MR.

Maximal ancestral graph models (MAGs) additionally assume the graph contains a maximal
number of edges, i.e., if it is not possible to block all paths between two variables, these variables
must be connected by an edge. The graph of Figure 1.1 can be treated as a MAG. It still allows
an unknown, confounder between MR and D. However, inserting a confounder U between
LE and D is not allowed, because then there would be two paths FI → LE ← U → D and
FI → LE→ D. The latter path can only be blocked at LE, which would open the former path
that cannot be blocked by any variable in the model. Inserting this confounder U would be
allowed if there was an edge FI→ D in the MAG.

In the DAG model, a correlation between LE and D under the right adjustment means
low education is causing diabetes. How can we be certain that it is not diabetes causing low
education? Well, because there is an arrow from LE to D in the model, and we assume the
model has been chosen correctly by a domain expert2.

However, often it is only known that one of two variables is causing the other, but not which
variable is the cause and which one is the effect. This uncertainty arises especially if the model
has not been curated by a human, but learned automatically from correlations in observed data.
It can be represented graphically by connecting the correlated variables with an undirected edge.
From a model containing an undirected edge, one can then derive two DAGs, one in which the
undirected edge has been replaced by a directed edge in one direction and one in which the
directed edge points in the opposite direction. A model with multiple undirected edges would
thus represent a large, finite set of DAGs with a DAG for each possible edge orientation. Some of
these orientations might not be consistent with the observed data or be otherwise invalid, so we
only consider sets of DAGs that are statistically indistinguishable from each other by forbidding
certain edge orientations, e.g., we do not allow orientations that transform an undirected cycle
to a directed cycle in the DAG. These graphs with additional undirected edges are called chain
graphs [LW89; Fry90]. Requiring further that the set of represented DAGs is not empty, i.e., not
all orientations are forbidden, leads to the class of restricted chain graphs.

We will generalize all our results like the constructive back-door criterion and our algorithms
from DAGs to maximal ancestral graphs and restricted chain graphs, enabling one to find
adjustment sets in those models efficiently. For this generalization, we investigate which kinds

2The expert could, for example, rely on temporal orderings since a cause occurs before its effects.

4

of paths can exist in the various graphical models and show that some paths are syntactically
equivalent between all models. Thus, using these paths, the same separation algorithms can be
used for all these models.

Identification in SEMs. In practice, researchers often assume that the relationships between
all variables are linear [Bol89], using so-called structural equation models (SEMs). A linear
SEM encodes the influence of a variable X on a variable Y by a single parameter that describes
how much the mean of variable Y is changed by a unit change of variable X . This parameter is
called the direct causal effect of X on Y . Each variable can only influence its children directly,
so if Y is not a child of X , the direct causal effect of X on Y is zero. Hence, from the values of
all parents of Y , one can calculate the expected mean of variable Y , and the probability that
Y has value y depending on the current values of its parents is given by a normal distribution
centered at the mean.

Building a SEM requires much less data than building a non-linear model since one only
needs a single parameter for each edge rather than probabilities for exponentially many combi-
nations of variable values. This makes it feasible to gather enough data to create larger models
consisting of more variables.

For instance, a 10% increase in the mother’s diabetes risk could increase the diabetes risk
of the child by 2%. Then the direct causal effect of MR on D would be 2%/10% = 0.2. MR
also affects D through the path MR→ MD→ D. Let us assume for a moment that MD is not a
binary variable and the direct causal effect of MR on MD is 0.5 and the effect of MD on D is 0.3,
then the observed correlation between MR and D is 0.2 + 0.5 · 0.3 = 0.35.

In linear models, it is possible to calculate causal effects that cannot be identified in non-
linear models. For example, the equation 0.2 + 0.5 · 0.3 = 0.35 involves three direct causal
effects on the left-hand side and one correlation on the right-hand side. Since all correlations
are known from the observed data, the equation allows us to identify one of the direct causal
effects, e.g., 0.2, whenever the other two directed causal effects are already identified.

The identification problem in SEMs asks one to identify as many parameters of the SEMs
as possible, e.g., calculate as many direct causal effects as possible from observed correlations.
The identification problem is one of the most important problems in the theory and practice of
SEMs [Fis66]. In general cases, the problem remains unsolved, although many methods have
been developed to identify specific cases.

The most popular methods to identify direct causal effects in SEMs are instrumental
variables (resp. conditional instrumental variables) [BT84; AIR96; Imb14; Pea01]. Thereby,
one searches for a variable Z, such that the direct causal effect of X on Y is the quotient of the
correlation between Y and Z and the correlation between X and Z (resp. after conditioning on
other covariates). There exists a simple graphical criterion to decide whether a given variable
is a (resp. conditional) instrumental variable, essentially Z needs to be (resp. conditionally)
independent of Y while being correlated with X . The algorithmic complexity of conditional
instrumental variables has not been investigated, so far, and it has been unclear how to find
conditional instrumental variables efficiently.

We will show that testing whether the criterion for conditional instrumental variables is
satisfied is an NP-complete problem because it is hard to choose the set of covariates for
conditioning. Nevertheless, we provide an efficient algorithm to find a variable satisfying the
criterion if any conditional instrumental variable exists in the graph. For that, we define a
specialization of the criterion which can be verified efficiently, and prove that if a variable

5

INTRODUCTION

satisfies the general criterion, then there always exists at least one variable satisfying the
specialized criterion.

In some instances of SEMs, it is not possible to identify causal effects using a single
(conditional) instrumental variable, but multiple instrumental variables together can identify
it. Brito et al. have formalized this as so-called instrumental sets [Bri04; Bri10; BP02] and
have given a criterion to recognize instrumental sets. However, they have left the algorithmic
aspects of instrumental sets open. We will analyze the complexity of their criterion and show
that it is NP-complete to decide whether a set is an instrumental set, even though each variable
in the set has to fulfill a criterion that is a special case of our specialized criterion for conditional
instrumental variables. We then derive a simpler criterion from the instrumental set criterion,
which yields efficient algorithms in certain cases.

6

1.1. PUBLICATIONS

1.1 Publications

The results of this thesis have lead to the following publications:

[ZLT14] Benito van der Zander, Maciej Liśkiewicz, and Johannes Textor. “Constructing
Separators and Adjustment Sets in Ancestral Graphs”. In: Proceedings of the 30th
Conference on Uncertainty in Artificial Intelligence (UAI). (IBM Best Student Paper
Award). AUAI Press, 2014, pp. 907–916

[ZTL15] Benito van der Zander, Johannes Textor, and Maciej Liśkiewicz. “Efficiently Finding
Conditional Instruments for Causal Inference”. In: Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI). 2015, pp. 3243–3249

[ZL16b] Benito van der Zander and Maciej Liśkiewicz. “Separators and Adjustment Sets in
Markov Equivalent DAGs”. In: Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI). 2016, pp. 3315–3321

[ZL16a] Benito van der Zander and Maciej Liśkiewicz. “On Searching for Generalized Instru-
mental Variables.” In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS). 2016, pp. 1214–1222

[Tex+16] Johannes Textor, Benito van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz, and
George TH Ellison. “Robust causal inference using directed acyclic graphs: the R package
‘dagitty’”. In: International Journal of Epidemiology 45.6 (2016), pp. 1887–1894

[ZLT19] Benito van der Zander, Maciej Liśkiewicz, and Johannes Textor. “Separators and
Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework”.
In: Artificial Intelligence 270 (2019), pp. 1–40

[ZL19] Benito van der Zander and Maciej Liśkiewicz. “Finding Minimal d-separators in Linear
Time and Applications”. In: Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence (UAI). AUAI Press, 2019

7

INTRODUCTION

1.2 Structure of this Thesis

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5
Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix D

Appendix C

Appendix B

Figure 1.2: This thesis as a DAG representing the non-transitive dependencies between chapters.

Figure 1.2 shows the order in which the chapters of this thesis should be read.
The next chapter, Chapter 2, introduces basic notations for probability distributions and

graphs, and formally defines paths, separation, various graphical models, and causal effects.
The following three chapters examine non-parametric models. Chapter 3 presents efficient

algorithms for separation, especially for testing or finding separators, minimal separators, and
minimum separators.

Chapter 4 presents efficient algorithms for covariate adjustment, especially for testing or
finding adjustment sets, minimal adjustment sets, and minimum adjustment sets. For this goal,
the algorithms of Chapter 3 are combined with new adjustment criteria that decide whether a
separating set is an adjustment set.

Chapter 5 empirically evaluates some of the algorithms of Chapter 4 on random graphs and
compares them with other identification methods.

Chapter 6 is the second part of this thesis and studies structural equation models. It introduces
several definitions of instrumental variables and instrumental sets, and algorithms to test and
find them, as well as NP-completeness results.

The thesis ends with a discussion in Chapter 7, the bibliography in Chapter 8, and the
appendices.

8

2 Preliminaries:
Causal Graphical Models

In this chapter, we recall the language of graphical models and present our notations. We also
introduce the class of restricted chain graphs.

2.1 General Background and Notation

Probability distributions. We write random variables with upper-case letters like X,Y, Z,
and their values with lower-case letters x, y, z. Sets of variables and their (ordered associated)
values are written in boldface, e.g., V = {X,Y, Z} and v = (x, y, z).

We consider discrete joint probability distributions defined by their probability mass function
P (V = v) and continuous probability distributions equivalently defined by their probability
density function P (V = v). For V = {V1, . . . , Vn}, we use the notation P (v) = P (V = v) = probability density function

P (v1, . . . , vn) = P (V1 = v1, . . . , Vn = vn). Most of our results will be written in the notation
of discrete distributions, but they are also valid for continuous distributions.

There are two ways to obtain a probability distribution on a subset of variables V′ = V\W.
First, conditioning, which fixes the value of the variables W, i.e., P (v′ | w). P (v′ | w) is conditioning

called the conditional probability (distribution) of v′ given w and calculated with Bayes’ rule as conditional probability
Bayes’ ruleP (v′ | w) = P (v′,w)

P (w) = P (w|v′)P (v′)
P (w) . Secondly, marginalization, which sums over all possible

marginalizationvalues of W, i.e., P (v′) =
∑

w P (v,w) =
∑

w P (v | w)P (w).
Two sets of variables U and W are conditionally independent if P (u | w) = P (u), or conditionally independent

equivalently, if P (u,w) = P (u)P (w), for all values u and w.

Mixed graphs and paths. We consider mixed graphs G = (V,E) with nodes (vertices) V mixed graphs

and directed (A → B), undirected (A− B), and bidirected (A ↔ B) edges E. The number
of nodes is n = |V| and the number of edges is m = |E|. The nodes generally correspond to
random variables and the edges represent certain relationships between the variables.

We also consider graphs G = (O ⊆ V,E) where the nodes are partitioned into two sets,
O of observed nodes (or measured, endogenous nodes) and V \O of unobserved (or latent, observed

unobserved
latent

exogenous nodes). We may omit “O ⊆” if O is clear from the context.
We only consider graphs that have at most one edge between any pair of nodes, although, in

some examples and proofs, we abbreviate a node with two children← U → as one bidirected
edge, in which case there can be a directed and a bidirected edge between the same pair of
nodes. Nodes linked by an edge are adjacent to (neighbors of) each other. The degree deg(G) adjacent

neighbors
degree

of a graph is the number of neighbors the node with the highest number of neighbors has.
A walk of length k is a node sequence V1, . . . , Vk+1 such that there exists an edge sequence

walk

9

PRELIMINARIES: CAUSAL GRAPHICAL MODELS

E1, E2, . . . , Ek for which every edge Ei connects Vi, Vi+1. Then V1 is called the start nodestart node

and Vk+1 the end node of the walk. Every other node V2, . . . , Vk is an internal node. A pathend node
internal node

path
is a walk in which no node occurs more than once. A cycle is a walk whose start and end

cycle
node are the same node. A subsequence Vi, . . . , Vj of a walk (path) is a subwalk (subpath). By

subwalk
subpath

V1
∗∼ Vk+1 we denote a walk between V1 and Vk+1 with k ≥ 0 and by V1

+∼ Vk+1 a walk with
k > 0.

Depending on the context, we will represent a walk as a sequence of nodes or a sequence
of incident edges. Neither the nodes nor edges need to exist in the graph unless we explicitly
talk about existing walks or say something like “there is a path”. For example, when a node V
is given and we say “there exists no path→ V ←”, it means that there exist no distinct nodes
V1, V2 such that there are directed edges V1 → V and V2 → V in a graph that you need to infer
from the context, usually the graph containing V . If we say “there exists no walk→ V ←”,
nodes V1 and V2 do not need to be distinct.

For a path π, we denote by π[Vi
∗∼ Vi′] the subpath of π consisting of the nodes between Vi

and Vi′ . For walks, a subwalk, which does not need to be unique. We concatenate node and edge
sequences by writing them behind each other, e.g., V1π[V2

∗∼ Vk+1] or π[V1
∗∼ Vi]π[Vi+1

∗∼
Vk+1] form again the path π. For the sake of simplicity, we write often the last concatenation as
π[V1

∗∼ Vi]π[Vi
∗∼ Vk+1] assuming a duplicated end node Vi in the resulting path is implicitly

removed. The concatenation of two paths might not be a path, but it is always a walk (see
Lemma 3.11).

Given a node set X and a node set Y, a walk from X ∈ X to Y ∈ Y is called X-proper ifX-proper

only its start node is in X. If X is clear from the context, it is omitted and we just say the walk
is proper.proper

We will apply set operators to graphs G and walks w as if they were sets, and the result can
be either a set, a graph, or a walk. For example, depending on context G ∩X (or w ∩X) can
mean the set of all nodes in G (or w) intersected by X or G (or w) with all nodes outside of X
removed. Or G \ (X → Y) means a graph without the edge X → Y .

Ancestry. A walk of the form V1 → . . .→ Vk is directed (causal). A walk that is not causaldirected
causal is non-causal or biasing. If there is a directed walk from U to V , then U is called an ancestor

non-causal
ancestor of V and V a descendant of U . We write directed walks from U to V as U ∗→ V or in reverse

descendant V ∗← U . If U and V need to be distinct, we also use U +→ V or V +← U .
A walk is possibly directed if it were directed after replacing all edges −− by→. We writepossibly directed

possibly undirected walks from U to V as U ∗→−− V , U +→−− V , V ∗←−− U , or V +←−− U . The plus
sign marks again distinct nodes. A possibly directed path can consist of only undirected −−
edges. If a possibly directed path contains at least one directed edge, it is called semi-directed.semi-directed

If there is a possibly directed path from U to V , then U is called a possible ancestor of V andpossible ancestor

V is a possible descendant of U . Some authors call possible ancestors anteriors.possible descendant

All ancestors of V are possible ancestors of V and all descendants are possible descendants.
Every node is its own ancestor, descendant, possible ancestor, and possible descendant, con-
nected to itself by a walk of length 0. For a node set X, the set of all of its ancestors is written
as An(X). The descendant, possible ancestor, and possible descendant sets De(X), pAn(X),
and pDe(X) are analogously defined.

If there is an edge A → B, A is a parent of B and B a child of A. Also, we denote byparent
child Pa(X), (Ch(X), Ne(X)), the set of parents (children, neighbors) of X.

10

2.1. GENERAL BACKGROUND AND NOTATION

Subgraphs. Give a graph G = (V,E), a graph G′ = (V′,E′) is a subgraph (or configuration) subgraph

of G if V′ ⊆ V and E′ ⊆ E. The induced subgraph for a given node set V′ is the graph induced subgraph

GV′ = (V′,E′) that only contains the edges E′ = E ∩ (V′ ×V′) that are adjacent to nodes
in V′.

The skeleton of G is a graph with the same nodes in which every edge is replaced by skeleton

an undirected edge. A connected component is a subgraph in which every pair of nodes is connected component

connected by a path. A subgraph containing only a single node is also a connected component.
A connected component is a bidirectionally connected component if for every pair of nodes bidirectionally connected

componentthere exists a connecting path that contains only bidirected edges.
For any subset A and B of V, by A→ B we denote the set of all edges A→ B in E, such

that A ∈ A and B ∈ B; the sets A← B, A↔ B, and A−B are defined analogously. Using
this notation, the graph obtained from a graph G = (V,E) by removing all edges entering a
certain node set X is written as GX = (V,E \ ((V → X) ∪ (V ↔ X))). The removal of all
edges leaving X is written as GX = (V,E \ ((X→ V) ∪ (X−V))). The application of both
these operations (GX)X′ is abbreviated as GXX′ . Descendants and ancestors in these graphs are
written as set subscripts at the corresponding function without specifying the graph, e.g., DeX
or AnX.

A v-structure are three nodes A, B, and C that induce a subgraph A→ B ← C, i.e., A and v-structure

C are unconnected parents of B. Some authors call v-structures immoralities.
A graph is complete1 if there is an edge between any pair of nodes. A graph is chordal if complete

chordalevery induced subgraph with more than three nodes is not a cycle, i.e., every cycle with more
than three nodes contains two nodes that are connected by an edge that does not belong to the
cycle.

Separation. A node V on a walk w is called a collider if two arrowheads of w meet at V , collider

e.g., U → V ←W or U ↔ V ←W . Walks containing less than two edges cannot contain a
collider. An internal node that is not a collider is called a non-collider. If a node occurs multiple non-collider

times on a walk, it can occur as a collider and as a non-collider on the same walk. A fork is a fork

node with adjacent edges←→, the opposite of a collider. Two nodes are collider connected if collider connected

there is a path between them on which all internal nodes are colliders. Adjacent vertices are
collider connected.

A walk is active given Z if every non-collider is not in Z and every collider is in An(Z). active

A walk is blocked by Z if is not active given Z. For a walk active given (blocked by) the blocked

empty set, we just say the walk is active (blocked). Active walks are also called d-connecting,
m-connecting, or just connecting. This is an unusual definition2, but in Section 3.1.2 we will
see that standard definitions are equivalent.

Two nodes X and Y are d-connected by a set Z if there is a path X ∗∼ Y active given Z. d-connected

Two node sets X,Y are d-connected by a set Z if there is any pair X ∈ X, Y ∈ Y such that X
and Y are d-connected by Z. Two node sets X,Y not d-connected by Z are d-separated by Z d-separated

and then Z d-separates them. Two node sets X,Y are d-separable if there exists any set Z
that d-separates them. We will only consider disjoint sets X, Y, and Z. For nodes d-connected
(d-separated) by the empty set, we will just say they are d-connected (d-separated). We will
use m-connected or just connected as a synonym for d-connected, and m-separated or just m-connected

connected
m-separated

separated as a synonym for d-separated, likewise for d-separates and d-separable. A set Z that

separated1Not to be confused with a complete criterion, which is a criterion formulating a necessary condition.
2Most authors use different terminology for different classes of graphs, and only use colliders “in An(Z)” for

11

PRELIMINARIES: CAUSAL GRAPHICAL MODELS

DAG CPDAG RCG CGMAGAG

Figure 2.1: The inclusion relationships between the relevant classes of causal graphs. The
inclusions are proper, i.e., DAG (RCG (CG, CPDAG (RCG (CG, and DAG (MAG (
AG, which means for example every DAG is an RCG but not necessarily a CPDAG.

separates X and Y is a separator (relative to (X,Y)).separator

(X⊥⊥Y | Z)G shall denote that X and Y are d-separated given Z in the graph G. (X⊥6⊥
Y | Z)G means X and Y are d-connected given Z in the graph G. The graph subscript is omitted
if the graph is clear from the context.

2.2 Classes of Graphical Models

In this section, we introduce the most commonly used classes of graphical models. The
models differ in the kind of allowed edges, their definition of separation, and their statistical
interpretation. For each model, we give a quick motivation and definition. Figure 2.1 shows a
summary of the inclusion relationships between important classes. We only define one novel
class – the RCGs – all other classes are well known.

Directed acyclic graphs (DAGs), Bayesian network. A graph that only contains directed
edges is a directed graph, and a DAG is a directed graph that contains no directed cycle. Adirected graph

DAG Bayesian network is a DAG G representing a set of random variables V = {V1, . . . , Vn} as
nodes and the dependencies between the variables as edges, such that each variable depends
(only) on its parents. The random variables can either be discrete or continuous variables since
all definitions are valid for both cases.

A joint probability distribution P over the variables V is compatible with G if P can becompatible

factorized as

P (v) =
n∏
i=1

P (vi | pai), (2.1)

where v (resp. vi and pai) denotes a particular realization of variables V (resp. Vi and Pa(Vi)),
and P (vi | pai) is a conditional probability distribution of Vi given Pa(Vi).

Let X, Y, and Z be three disjoint sets of random variables. If X and Y are d-separated
by Z in the DAG G, X and Y are conditionally independent given Z in every probability
distribution compatible with G. If X and Y are not d-separated by Z in the DAG G, they are
conditionally dependent in at least one probability distribution compatible with G 3. Thus,
by studying the properties of the DAG one can make statements that hold for all compatible
probability distributions without ever studying the probability distributions themselves.

paths, and “in Z” for walks.
3one could also say: conditionally dependent in almost all probability distributions compatible with G [Pea09].

12

2.2. CLASSES OF GRAPHICAL MODELS

Although the edges in the Bayesian network are directed, the direction of each edge carries
no deeper meaning besides conditional independence. In a causal DAG, an edge Vi → Vj is causal DAG

taken to represent a direct causal effect of Vi on Vj and an intervention on variable Vi yields
different results than an intervention on variable Vj (see Subsection 2.3)[Pea09].

Completed partially directed acyclic graphs (CPDAGs). A given probability distribution
can be compatible with multiple Bayesian networks. A common example is the three DAGs
G→ : A→ B → C, G↔ : A← B → C, and G← : A← B ← C. Any probability distribution
P (A,B,C) that is compatible with one of these graphs is compatible with the two other graphs
as P (A)P (B|A)P (C|B) = P (A|B)P (B)P (C|B) = P (A|B)P (B|C)P (C) follows from
Bayes’ rule. Nevertheless, P is generally not compatible with a DAG G× : A→ B ← C.

Two graphs that encode the same set of probability distributions are called Markov equivalent. Markov equivalent

Two DAGs are Markov equivalent iff they imply the same conditional independences; and they
imply the same conditional independences iff they have the same skeleton and the same v-
structures[VP90]. For a DAG D, the class of Markov equivalent graphs to D, denoted as [D], is
defined as [D] = {D′ | D′ is Markov equivalent to D}. For the above example graphs, we have
[G→] = {G→,G↔,G←} and [G×] = {G×}. G→ and G× are not Markov equivalent since G→
has no v-structures and G× has one v-structure.

A completed partially directed acyclic graph (CPDAG or essential graph) G = (V,E) is a completed partially directed
acyclic graph
CPDAG

mixed graph with directed and undirected edges that represents an entire Markov equivalence
class [D]. The edge A→ B is in E if A→ B belongs to every D′ ∈ [D] and A −− B is in E if
there exist D′, D′′ ∈ [D] such that A→ B is an edge of D′ and A← B an edge of D′′ [Chi95;
AMP+97]. Any replacement of all undirected edges in a CPDAG by directed edges which does
not introduce new v-structures yields a DAG in the represented Markov equivalence class, and
any DAG in the equivalence class can be obtained this way.

Chain graphs (CGs), partial directed acyclic graphs. Chain graphs are mixed graphs that chain graph
CGcontain no semi-directed cycle [LW89; Fry90; AMP97].

They generalize CPDAGs by representing a subset of the Markov equivalence class. For
example, a chain graph A← B −− C would represent DAGs A← B → C and A← B ← C.
Another example is given in Figure 2.2. Formally, given a CG G a DAG D is a consistent DAG
extension of G if and only if (1) G and D have the same skeletons, (2) if A→ B is in G, then consistent DAG extension

A→ B is in D, and (3) G and D have the same v-structures. We refer to all consistent DAG
extensions of a mixed graph G as CE(G). Notice that if a CG G is a CPDAG then CE(G) = [D]
for some DAG D, and if G is a DAG then CE(G) = {G}.

A chain graph can be partitioned into a set of chain components, each chain component chain components

consisting of all nodes that are connected to each other by undirected paths. A node not adjacent
to any undirected edge would be a chain component by itself.

[AMP+97] show that a CG G is a CPDAG if and only if (1) every chain component of
G is chordal, (2) no induced subgraph of G is A → B −− C, and (3) every directed edge
A→ B ∈ G is strongly protected. An edge is strongly protected if it occurs in one of the four strongly protected

induced subgraphs shown in Figure 2.3.
D-separation in a chain graph G is defined through d-separation of the represented DAGs

D ∈ CE(G). A path π in G corresponds to a path πD that has the same nodes in D. Every
collider on π is a collider on πD, but a non-collider on π can either be a non-collider or a collider
on πD when there are undirected edges. Using the notation of [Zha08], a non-collider on π is

13

PRELIMINARIES: CAUSAL GRAPHICAL MODELS

G: A B

C D

R: A B

C D

D1: A B

C D

D2: A B

C D

Figure 2.2: An example chain graph G that is neither a CPDAG nor an RCG. It represents the
DAGs CE(G) = {D1,D2}, soR is the RCG equivalent to G.

(1): A B

C

(2): A B

C

(3): A B

C

(4): A B

C1

C2

Figure 2.3: All induced subgraphs whose occurrence makes an edge A → B strongly pro-
tected [AMP+97]. Arbitrary nodes can be chosen as C, C1 and C2, but all nodes need to be
distinct.

called a definite non-collider if it is also a non-collider on πD for every DAG D ∈ CE(G). π isdefinite non-collider

a definite status path if every internal node is either a collider or a definite non-collider. Twodefinite status

nodes X and Y are d-connected by a set Z in the CG if there is a definite status path X ∗∼ Y
active given Z. Definite status paths can be characterized without involving the represented
DAGs (see Section 3.1.1).

Restricted chain graph (RCGs). A chain graph G is a restricted chain graph (RCG) ifrestricted chain graph
RCG and only if (1) every chain component of G is chordal and (2) no induced subgraph of G is

A → B −− C. Hence, RCGs are between CPDAGs and CGs in terms of generality. Any
CPDAG, DAG, or undirected chordal graph is an RCG. We will later show that any CG G
that represents at least one DAG can be transformed to an equivalent RCG R that satisfies
CE(R) = CE(G) (see Proposition 3.39).

RCGs serve three purposes. First, they allow us to properly reason about some subgraphs
of CPDAGs which are not CPDAGs themselves. Secondly, they capture the algorithmically
relevant properties of CPDAGs because, for most algorithms, it does not matter if the edges are
strongly protected or not. Thirdly, such graphs arise naturally when learning a causal structure
from statistical data with background knowledge. Structure learning algorithms proposed by
[VP90; VP90; VP92] construct from a given list of conditional independence statements a
CPDAG. The learning algorithm can be extended to include required and exclude forbidden
directed edges given as background knowledge [Mee95], in which case the resulting graph
might not be a CPDAG anymore.

Ancestral graphs (AGs). By marginalizing or conditioning a probability distribution compat-
ible to a DAG, one can obtain a probability distribution on fewer variables that is not compatible
to any DAG [RS02].

Ancestral graphs were designed to represent such marginalized and conditioned distributions.
They generalize DAGs by allowing bidirected and undirected edges, whereby a bidirected edge

14

2.2. CLASSES OF GRAPHICAL MODELS

G: A B

C D

D1: A S B

C L D

D2: A S B

C L D

D3: A
S1

S2
B

C
L1

L2
D

Figure 2.4: An exemplary ancestral graph G. DAGs D1, D2, and D3 are represented by G via
G = D1[

S
L = D2[

S
L = D3[

{S1,S2}
{L1,L2}. D1 is also the canonical DAG C(G) of G. G is a maximal,

ancestral graph, but we will not refer to it as MAG, since it contains an undirected edge.

↔ stands for a latent node← L→ and an undirected edge −− stands for a biased node→ S ←.
AGs are closed under marginalization and conditioning, so that marginalizing and conditioning
the distribution of an AG always leads to a distribution that can be represented by another
AG [RS02].

AGs can be characterized as follows: A mixed graph G = (V,E) is an ancestral graph ancestral graph

(AG) if the following two conditions hold [RS02]: (1) For each edge A← B or A↔ B, A is AG

not a possible ancestor of B. (2) For each edge A −− B, there are no edges A← C, A↔ C,
B ← C, or B ↔ C. From these conditions, it follows that there can be at most one edge
between two nodes in an AG [RS02]. Syntactically, all AGs containing only directed edges are
DAGs and all DAGs are AGs [Zha08].

Separation in ancestral graphs is usually calledm-separation rather than d-separation [RS02],
however, for DAGsm-separation and d-separation are identical, so we have defined d-separation
as m-separation in Section 2.1 and we will use the term d-separation or even just separation for
all graph classes when giving statements that are valid for different classes of graphs.

Maximal ancestral graph (MAGs). An AG G = (V,E) is a maximal ancestral graph (MAG) maximal ancestral graph
MAGif every non-adjacent pair of nodes U, V can be m-separated by some Z ⊆ V \ {U, V }. Every

AG G can be made maximal by adding bidirected edges between node pairs that cannot be
m-separated, which preserves all m-separation relationships in the graph [RS02].

A DAG G = (V,E) is represented by a MAG M = G[SL with nodes V \ (S ∪ L) for
sets S,L ⊆ V, whereby M has an edge between a pair of nodes U , V if U , V cannot be
d-separated in G by any Z with S ⊆ Z ⊆ V \ L. That edge has an arrowhead at node V if
V /∈ An(U ∪S). Hence, every MAG represents an infinite set of underlying DAGs that all share
the same ancestral relationships. Thus, one can use MAGs to identify causal effects without
measuring or knowing all occurring variables.

The canonical DAG C(M) of a MAGM is the DAG obtained fromM by replacing every canonical DAG

↔ edge with ← L → and every − edge with → S ← with new nodes L or S which form
sets L, S. Clearly C(M)[SL=M (see [RS02]). An example is shown in Figure 2.4.

Like [Zha08] we will only consider MAGs that contain no undirected edges, i.e., S = ∅
whenever we construct a MAG G∅L = GSL from a DAG G. Ancestral graphs without undirected
edges can also be characterized as the class of the mixed graphs that do not contain cycles of the
form V1

+→ Vk → V1 or V1 ↔ V2
∗→ Vk → V1.

Semi-Markovian models. A semi-Markovian model is a DAG with additional bidirected semi-Markovian model

edges that represent latent variables [Pea09]. Bidirectional edges can occur between nodes
also connected by a directed edge, and each bidirected edge represents exactly one latent

15

PRELIMINARIES: CAUSAL GRAPHICAL MODELS

variable. The statistical interpretation of a semi-Markovian model is the same as the statistical
interpretation of the DAG one obtains by replacing each bidirected edge Vi ↔ Vj with a
subgraph Vi ← Lij → Vj . Thus, semi-Markovian models can be considered as another notation
of writing DAGs with unobserved nodes rather than as a separate class4.

Structural equation models (SEMs). A structural equation model (SEM) is a parametricstructural equation model
SEM semi-Markovian model which is more specific than the graphical models defined above. Each

random variable Vj with domain R follows a linear equation vj =
∑

i λjivi + εj , where λji is a
parameter associated with edge Vi → Vj and εj is a Gaussian random variable. Thus, the term
Pj(vj | paj) in the factorization of P (v) of a DAG becomes the probability that Vj takes some
value vj given by that linear equation.

This class is properly defined and discussed further in Chapter 6.

Related Classes. There exist many other classes of graphical models that we do not investigate
in this thesis, like undirected graphs, cyclic graphs, partial ancestral graphs (PAGs), or maximal
PDAGs. Appendix B gives an overview about these classes.

2.3 Do-operator and Causal Effects

Causal models provide a way to formally model causal effects by describing how a probability
distribution P (v) is changed by an intervention on variables X. Such an intervention forcesintervention

the variables X to have values x, regardless of all other influences which might affect the
variables X, just like one could change the values of X in a real-life experiment to see how
the change will affect all other variables. The post-intervention distribution is denoted as
P (V = v | do(X = x)) or P (v | do(x)).

Given a pre-intervention distribution P (v) that is compatible to a DAG G, the post-interven-
tion distribution P (v | do(x)) is compatible to the DAG GX, in which all edges into X have
been removed and X is disconnected from its parents.

P (v) can be factorized according to equation 2.1, so P (v | do(x)) can be calculating by
removing all factors for X:

P (v | do(x)) =


∏

Vi∈V\X

P (vi | pai) for v consistent with x,

0 otherwise,
(2.2)

where v is consistent with x if the values for X among v are the same as x. For an example of
a not consistent v, consider P (v | do(x = 1)), which is necessarily zero if v contains x = 2.

The (total) causal effect of X on Y is P (y | do(x)), i.e., the effect of an intervention ontotal causal effect

X on some variables Y. If X and Y are singletons and Y is a child of X, then P (y | do(x))
is also a direct causal effect. When all variables in the graph are observed, the causal effectdirect causal effect

P (y | do(x)) can be calculated using the above factorization.
However, when some variables are unobserved, the question of whether P (y | do(x)) is

identifiable, i.e., whether it can be computed from a pre-intervention distribution P (O = o)identifiable

independently of the unknown quantities involving the unobserved variables V \O, becomes
4[Pea09] also calls all DAGs that have unobserved variables semi-Markovian models regardless if they contain

bidirected edges or not. He calls DAGs that have neither bidirected edges nor unobserved variables Markovian
models.

16

2.3. DO-OPERATOR AND CAUSAL EFFECTS

G1: X Y

Z

U

G2:

X1

Z1

Z2

X2

Y1

Y2

G3: X Y

U

V G4: X Y

U

Figure 2.5: In G1, the causal effect of X = {X} on Y = {Y } can be identified with the parents
as an adjustment set Z = {Z}. In G2, the causal effect of X = {X1, X2} on Y = {Y1, Y2}
can be identified with the adjustment set Z = {Z1, Z2}, which does not satisfy the back-door
criterion. In G3 and G4, the causal effect of X = {X} on Y = {Y } can not be identified by
any (observed) adjustment set due to the unobserved variable U . In G3, the causal effect can be
identified using the do-calculus [Pea09, Section 3.3], while in G4 the causal effect cannot be
identified at all.

much more complex. For a formal definition of identifiability, see [Pea09, Section 3.2]. Fig-
ure 2.5 shows three DAGs G1, G2, and G3 for which the causal effect of X on Y is identifiable,
and a DAG G4 for which the effect is not identifiable.

If at least the parents Z = Pa(X) of a variable X are observed besides X ∪ Y and are
disjoint from Y, the causal effect of X on variables Y ⊆ V \ (X ∪ Z) can be calculated by
adjusting for the parents [Pea09, Section 3.2]: adjusting

P (y | do(x)) =
∑
z

P (y | x, z)P (z). (2.3)

In this expression, the parents Z are used as a so-called adjustment set. If the parents are adjustment set

not observed, they cannot be used as an adjustment set. But there are other sets Z besides
the parents that can be used as adjustment sets. The most popular criterion that characterizes
possible adjustment sets is Pearl’s back-door criterion:

Definition 2.1 (Back-door criterion (BC) [Pea93; Pea09]). A set of variables Z satisfies the
back-door criterion relative to an ordered pair of variables (X,Y) in a DAG G if: back-door criterion

(a) Z ⊆ V \ De(X), and

(b) Z blocks every path between X and Y that contains an arrow into X .

Similarly, if X and Y are two disjoint subsets of nodes in G, then Z is said to satisfy the
back-door criterion relative to (X,Y) if it satisfies the back-door criterion relative to any pair
(X,Y) such that X ∈ X and Y ∈ Y.

In order to use the adjustment set for identification, all variables in Z need to be observed.
Condition (b) can also be understood as “X and Y need to be d-separated by Z in GX”.

However, the back-door criterion is not complete, i.e., there are sets that are adjustment sets,
but do not satisfy the back-door criterion. For example, Z = {Z1, Z2} in G2 of Figure 2.5 is an
adjustment set that does not satisfy condition (a), and no other adjustment set exist in G3 for X
and Y. We will discuss this further in Chapter 4.

17

PRELIMINARIES: CAUSAL GRAPHICAL MODELS

There also exist causal effects that cannot be identified by any adjustment set but can be
identified with other approaches. Pearl has discovered the three rules of the do-calculus, which
state equivalences between probability distributions:

do-calculus
Theorem 2.2 (Do-calculus [Pea09]). Given a DAG G and disjoint sets X, Y, Z, and W, the
following rules are valid for all probability distributions P compatible with G:

Rule 1. Insertion/deletion of observations

P (y | do(x), z,w) = P (y | do(x),w) if (Y ⊥⊥ Z | X,W) in GX.

Rule 2. Exchange of actions/observations

P (y | do(x), do(z),w) = P (y | do(x), z,w) if (Y ⊥⊥ Z | X,W) in GXZ.

Rule 3. Insertion/deletion of actions

P (y | do(x), do(z),w) = P (y | do(x),w) if (Y ⊥⊥ Z | X,W) in G
X Z(W)

,
where Z(W) is short for Z \AnX(W).

The do-calculus is sound and complete, so if a causal effect P (y | do(x)) is identifiable, one
can always derive a valid, equal expression involving only terms of P (o) by applying the rules
of the do-calculus [HV06]. The IDC-algorithm can calculate such a derivation in polynomial
time [SP06b; SP06a]. However, the IDC-algorithm can be slow (see Chapter 5). In practice,
adjustment is, however, often preferred to such alternatives5 because its statistical properties are
well understood, giving access to useful methodologies like robust estimators and confidence
intervals. In contrast, knowledge about the statistical properties of, e.g., front-door estimation is
still lacking [Van09; GK17].

Identification in graphical models beyond DAGs can be much harder. These models represent
a (possibly infinite) set of DAGs, and in order to identify the causal effect, one needs to find
one expression involving only P (o) that can identify the causal effect P (y | do(x)) in every
represented DAG.

More specific graphical models like SEMs assume that the compatible probability distri-
butions have a certain structure and allow the identification of causal effects that cannot be
identified in more general models. For example, in linear SEMs variables are assumed to be
normally distributed and only linearly affected by their parents. We will discuss identification in
linear SEMs further in Chapter 6.

5Quoting [Van09], “Time will perhaps tell whether results like Pearl’s front-door path adjustment theorem and
its generalizations are actually useful for epidemiologic research or whether the results are simply of theoretical
interest.”

18

3 Separation:
An Algorithmic Framework

In this chapter, we compile an algorithmic framework to solve m-separation problems in
ancestral graphs and d-separation problems in restricted chain graphs. Tasks involving separating
sets are one of the most fundamental primitives in the theory of causality, and they are necessary
building blocks to solve complex causal problems. In the next chapter, we will apply the
algorithms of this chapter to solve problems involving adjustment sets. Thus, it is important to
provide efficient algorithms to solve separation problems in various causal models.

For given disjoint node sets X,Y ⊆ V in a mixed graph G = (V,E), we consider three
classes of problems. Testing problems, where a set Z is given and the task is to decide whether
Z separates X and Y, finding problems, where the task is to find such a set Z, and enumeration
problems where we want to find all such sets Z.

The separating set Z should always be bounded between given sets I ⊆ R ⊆ V as
I ⊆ Z ⊆ R. The variables in I will always be included in the separating set even if the set
remains a separator without these variables. The constraint Z ⊆ R is necessary to handle
unobserved variables, which cannot be used for separation, i.e., rather than distinguishing
observed and unobserved variables as a property of a given graph we choose the more flexible
approach of passing the observed variables as a parameter to the algorithms. It will also be
important in the next chapter when we use the algorithms of this chapter to find adjustment
sets. We will show that certain variables cannot be used in adjustment sets, so these forbidden
variables are excluded from R. In practice, including additional variables in an adjustment set
can improve the precision of the causal effect estimation, even if these variables are not strictly
necessary, so researchers might want to force inclusion of these variables using the constraining
set I. Both constraints I and R are also necessary to build our enumeration algorithm.

Another possible constraint is that Z should be minimal or minimum. A separating set is
minimal if no strict subset of it is separating. It is minimum if no smaller separating set exists, minimal

minimumwhereby “smaller” can refer to the number of nodes in the set or a sum of individual node
costs over all nodes in the set. We further distinguish between strong minimality and weak
minimality (I-minimality), depending whether the subset is required to contain I. Smaller sets
are preferable in practice since actually measuring the variables can be very expensive.

Our problems are defined in Table 3.1, which gives a summary of the main algorithmic
results presented in this chapter, including the asymptotic runtimes of our algorithms. We use
the same name for the problem and the algorithm that solves it.

The rest of this chapter presents our algorithms to solve the problems of Table 3.1. Sec-
tion 3.1 proves fundamental facts about paths in causal graphs. Section 3.2 gives the basic
reachability algorithm REACHABLE and algorithms TESTSEP, FINDSEP, and LISTSEP based on
it. Section 3.3 describes the case of minimal and minimum separators, i.e., the precise difference

19

SEPARATION: AN ALGORITHMIC FRAMEWORK

Runtime Proposition
Verification: For given X,Y,Z and constraint I, decide whether . . .

TESTSEP Z separates X,Y O(n+m) 3.17
TESTMINSEP Z ⊇ I separates X,Y and Z is . . .

I-minimal O(n+m) 3.28
strongly-minimal O(n+m) 3.28

Construction: For given X,Y and constraints I,R, output a . . .
FINDSEP separator Z with I ⊆ Z ⊆ R O(n+m) 3.19
FINDMINSEP separator Z with I ⊆ Z ⊆ R which is . . .

I-minimal O(n+m) 3.29
strongly-minimal NP-complete 3.31

FINDMINCOSTSEP separator Z with I ⊆ Z ⊆ R which is . . .
I-minimum O(n3) 3.34
strongly-minimum O(n3) 3.35

Enumeration: For given X,Y, I,R, enumerate all . . . Delay
LISTSEP separators Z with I ⊆ Z ⊆ R O(n(n+m)) 3.20
LISTMINSEP I-minimal separators Z with I ⊆ Z ⊆ R O(n3) 3.33

Table 3.1: Definitions of algorithmic tasks related to m-separation in ancestral graphs and to
d-separation in restricted chain graphs as well as the time complexities of our algorithms solving
the associated problems. Throughout, X,Y,R are pairwise disjoint node sets, the set Z is
disjoint with the non-empty sets X,Y, and each of the sets I,R,Z can be empty. n denotes the
number of nodes and m the number of edges of the graph. A minimum separator minimizes
the sum

∑
Z∈Zw(Z) for a cost function w respecting the given constraints, i.e., w(V) = ∞

for V /∈ R. The construction algorithms output ⊥ if no set fulfilling the listed condition exists.
Delay complexity, for e.g. LISTMINSEP, refers to the time needed to output one solution when
there can be exponentially many solutions (see [Tak10]).

20

3.1. PROPERTIES OF WALKS AND PATHS

Problem Work Runtime Constraints

TESTSEP Shachter [Sha98] O(n+m)
our work O(n+m) I ⊆ Z ⊆ R

FINDSEP Tian et. al. [TPP98] O(n+m) Z ⊆ R
our work O(n+m) I ⊆ Z ⊆ R

TESTMINSEP and FINDMINSEP

Tian et. al. [TPP98] O(km) Z ⊆ R
Tian et. al. [TPP98] O(n2) Z ⊆ R
our work O(n+m) I ⊆ Z ⊆ R

FINDMINCOSTSEP Acid and De Campos [ADC96] O(n3) I ⊆ Z
Tian et. al. [TPP98] O(n3) Z ⊆ R
our work O(n3) I ⊆ Z ⊆ R

LISTMINSEP Textor and Liśkiewicz [TL11] delay O(n3) Z ⊆ R
our work delay O(n3) I ⊆ Z ⊆ R

Table 3.2: Comparison of our algorithms to the previously known best algorithms on separating
sets in DAGs. We have either improved the runtime or the supported constraints. Here, k = O(n)
is the (maximal) size of the separating set. We are not aware of any work studying these problems
for AGs or CGs before our work, besides the trivial problems TESTSEP and FINDSEP.

between weakly-minimal and strongly-minimal as well as algorithms TESTMINSEP, FINDMIN-
SEP, FINDMINCOSTSEP and LISTMINSEP. Section 3.4 shows how to use the algorithms for
restricted chain graphs on (unrestricted) chain graphs.

Scientific Contribution. Prior to this work various algorithms to test and find d-separating
sets were known [ADC96; Sha98; TPP98; TL11]. We have generalized them to ancestral graphs
[ZLT14; ZLT19] and (restricted) chain graphs [ZL16b]. Later we have improved the algorithms
for weakly minimal sets to run in linear time [ZL19]. Table 3.2 shows our improvements. The
algorithms have been implemented in DAGitty [Tex+16].

3.1 Properties of Walks and Paths

Before we can describe the separation algorithms for ancestral graphs and restricted chain
graphs, we need to study the paths that can occur in these graphs in great detail.

The key difference between general chain graphs and restricted chain graphs is that we can
remove the last undirected edge from any possibly directed path that contains a configuration
→−− in restricted chain graphs. In other words, any possibly directed path that starts with a
directed edge can be converted to a directed path.

Lemma 3.1. Let G be an RCG. If there exists a possibly directed walk w : X ∗→−− Y in G that

contains a subwalk U → V −−W , there also exists the walk w′ = wXU → wWY in G where
wXU (wWY) is the subwalk of w from X to U (from W to Y).

Proof. Since G is restricted, there exists an edge between U and W . This edge cannot be
U −−W or U ←W because it would create a semi-directed cycle. So there is an edge U →W ,

21

SEPARATION: AN ALGORITHMIC FRAMEWORK

which we can use to form walk w′.

The lemma uses the notation w′ = wXU → wWY rather than w′ = w[X ∗∼ U]→ w[W ∗∼
Y], since latter notation might remove more than one node if the walk visits U or W multiple
times.

In ancestral graphs, we cannot and do not need to remove→−− from paths because this
configuration never occurs in ancestral graphs:

Lemma 3.2. Let G be an AG. No possibly directed walk w : X ∗→−− Y in G contains a subwalk
U → V −−W .

Proof. The configuration→−− is not allowed in an ancestral graph.

So we can analyze paths in both graph classes as if they never contain→−−. Particularly,
for any possibly directed path between X and Y , we can assume it is an undirected subpath
followed by a directed subpath.

Corollary 3.3. Given two nodes X,Y in an AG or RCG, it holds: X ∈ pAn(Y) if and only if
there exists a path X ∗−− ∗→ Y .

Proof. In an AG, this is Corollary 3.3 of [RS02]. In an RCG, Lemma 3.1 can be applied
iteratively to remove all occurrences of→−− until all undirected edges occur at the beginning
of the path before directed edges.

Another interesting corollary holds in ancestral graphs, which has also been shown by
[RS02] for paths:

Corollary 3.4. Let w be a walk in an AG. A collider C on w is an ancestor of Z if and only if
C is a possible ancestor of Z.

This corollary is not true for restricted chain graphs. For example, on the path U → V ←W
in the RCG G1 of Figure 3.1, the node V is a possible ancestor of Z, but not an ancestor of Z.

G1:

U

V

W

Z G2:

A

B

C

D

E

Figure 3.1: Two examples of restricted chain graphs (RCGs).

3.1.1 Almost Definite Status

Usually, d-separation in chain graphs is defined using the concept of definite status paths – paths
on which every node has the same status as a collider or non-collider in the CG as in every
represented DAG. Any collider on a path in a CG is a collider on that path in any represented
DAG because directed edges of CGs remain directed edges in the represented DAGs. A non-
collider might stay a non-collider or become a collider, so definite non-colliders are defined as
non-colliders that do not become a collider in any represented DAG:

22

3.1. PROPERTIES OF WALKS AND PATHS

Definition 3.5 (Definite Status [Zha08]). Let w be a walk in a mixed graph G = (V,E). An
internal node V on w is called a definite non-collider if it occurs on w as A← V , V → B, or definite non-collider

as an induced subgraph A −− V −− B, where A and B are the nodes preceding/succeeding V
on w.

An internal node V on w is said to be of definite status if it is either a collider or a definite
non-collider on w.

A walk w is said to be of definite status if all internal nodes on the walk are of definite definite status

status.

Lemma 3.6. Let G be an RCG, D ∈ CE(G) a represented DAG, X,Y nodes, and Z a set.
There exists a definite status path π : X +∼ Y active given Z in G iff there exists a path π′ active
given Z in D.

Proof. [Zha08] proves this for PAGs, and it is not hard to see that their proof also works for
RCGs.

“Induced subgraph A− V − B” in Definition 3.5 means V is only of definite status if A
and B are not connected by an edge. This complicates the usage of definite status paths in
algorithms because one cannot know if a given path is of definite status without checking the
adjacencies in the underlying graph. For example, A − V − B is of definite status in some
graphs and not of definite status in other graphs.

Hence, we define a new, simpler kind of paths by dropping the condition of the unconnect-
edness of A and B.

Definition 3.7 (Almost Definite Status). Let w be a walk in a mixed graph G = (V,E). An
internal node V on w is called an almost definite non-collider if it occurs on w as A ← V , almost definite non-collider

V → B, or as A −− V −− B, where A and B are the nodes preceding/succeeding V on w.
An internal node V on w is said to be of almost definite status if it is either a collider or an

almost definite non-collider on w.
A walk w is said to be of almost definite status if all internal nodes on the walk are of almost almost definite status

definite status.

This property of almost definite status only depends on the edges in the paths, not on those
outside the path. For example, in the RCG G2 of Figure 3.1 the path A −− B −− C → D ← E
is of almost definite status. It is not of definite status, because A and C are connected, and thus
there exists a consistent DAG extension of G2 that contains a collider A→ B ← C.

In chain graphs, the only configurations not of almost definite status are→−− and −−←. In
general mixed graphs containing bidirected edges, two additional configurations could occur
that are also not of almost definite status,↔−− and −−↔.

Since ancestral graphs are mixed graphs, we can also apply Definition 3.7 to walks in
ancestral graphs. However, the definition is not meaningful there:

Lemma 3.8. Every path and walk in an ancestral graph is of almost definite status.

Proof. The configurations→−−, −−←,↔−−, and −−↔ do not occur in ancestral graphs.

3.1.2 Equivalences

So far, we have introduced various notions of connectedness between nodes – paths, walks,
almost definite status path, definite status paths, etc. We will now show that all these notions

23

SEPARATION: AN ALGORITHMIC FRAMEWORK

are equivalent. First, we continue with almost definite status paths and show the equivalence
between almost definite status and definite status in AGs and RCGs:

Lemma 3.9. Let G = (V,E) be an AG or RCG, and X,Y nodes. There exists a definite
status walk (path) wds : X +∼ Y if and only if there exists an almost definite status walk
(path) wads : X +∼ Y . Moreover, both walks (paths) have the same directed edges and every
non-collider or collider of wds occurs on wads .

Proof. Let wads be the shortest almost definite status walk between X and Y for which no such
wds exists. Then wads contains a subwalk U −− V −−W such that U and W are connected by
an edge. This edge cannot be (bi-)directed (in an AG) or there would be a semi-directed cycle
(in an RCG). Thus, we can replace U −− V −−W by U −−W . Since U and W still have the
same kind of adjacent edges, this replacement yields a shorter almost definite status walk, which
is either of definite status and satisfies the conditions of the lemma or contradicts wads being the
shortest walk without a wds. The proof of the opposite implication is trivial since every definite
status walk is an almost definite status walk. The same argument holds for paths.

Corollary 3.10. Let G = (V,E) be an AG or RCG, X,Y nodes, and Z ⊆ V \ {X,Y } a node
set. There exists a definite status walk (path) wds : X +∼ Y active given Z if and only if there
exists an almost definite status walk (path) wads : X +∼ Y active given Z.

This corollary implies that Lemma 3.6 also holds for almost definite status paths in RCGs.
However, it is no longer true that the corresponding paths in the represented DAGs have exactly
the same nodes as the path in the RCG.

The equivalence of paths and walks is well-known as deleting all nodes with multiple
occurrences from a walk yields a path, e.g., [RS02, Section 3.4.2] for ancestral graphs. For
later proofs, it is also important to know that the colliders and non-colliders on the walk and the
resulting path are closely related:

Lemma 3.11. Let G = (V,E) be an AG or RCG, X,Y nodes, and Z ⊆ V \ {X,Y } a node
set.

If there exists an almost definite status walk w : X ∗∼ Y active given Z, there exists an
almost definite status path π′ : X ∗∼ Y active given Z, such that

1. every collider on π′ is an ancestor of a collider on w,

2. π′ has at most as many colliders as w, and

3. every non-collider on π′ occurs as a non-collider on w.

Proof. Let w be the shortest walk for which this lemma does not hold. If every node on w
occurs only once, w is a path with the same colliders and non-colliders as the walk.

Otherwise, there is a first duplicate node D. Let w′′ be the walk with the nodes between
the first and last occurrence of D removed. All nodes of w′′ except D have the same state as
non-colliders/colliders on both w and w′′, so we only need to show the properties for D.

If D is a non-collider on w′′, one of its adjacent edges has no arrow pointing towards D,
and this edge also exists on w, so D is a non-collider on w and not in Z. If D is not of almost
definite status, G is an RCG and there is a subwalk C → D ∗−− E or C ∗−− D ← E of w′′. Due
to Lemma 3.1, we can replace this subwalk with C → E or C ← E without introducing a new
collider because no edge can point to a node adjacent to an undirected edge in w. The resulting

24

3.1. PROPERTIES OF WALKS AND PATHS

walk is of almost definite status and d-connected as C and E are non-colliders on w and not in
Z.

If D is a collider on w′′ and not on w, D occurs in a subwalk→↔ D → ∗∼← D ←↔ in w.
Hence, D is of definite status and an ancestor of a collider.

Because w′′ is shorter than w, there is a path π′ that has the required properties relative to
w′′ and thus also relative to w.

Now we are ready for the big lemma that shows the equivalence of all possible definitions
of separation in AGs and RCGs, including several possible variations of the condition that the
colliders in a path need to satisfy. We abbreviate definite status as ds- and almost definite status
as ads- for the sake of brevity.

Lemma 3.12. Let G = (V,E) be an AG or RCG, and X,Y,Z ⊆ V disjoint sets of nodes.
The following statements are equivalent:
(def) X and Y are not d-separated (m-separated) by Z.
(ds-p-An) There exists a ds-path X +∼ Y containing no non-collider in Z

and no collider not in An(Z).
(ds-p-pAn) There exists a ds-path X +∼ Y containing no non-collider in Z

and no collider not in pAn(Z).
(ds-p-AnXY) There exists a ds-path X +∼ Y containing no non-collider in Z

and no collider not in An(X ∪Y ∪ Z).
(ds-p-pAnXY) There exists a ds-path X +∼ Y containing no non-collider in Z

and no collider not in pAn(X∪Y∪Z).
(ads-p-An) There exists an ads-path X +∼ Y containing no non-collider in Z

and no collider not in An(Z).
(ads-p-pAn) There exists an ads-path X +∼ Y containing no non-collider in Z

and no collider not in pAn(Z).
(ads-p-AnXY) There exists an ads-path X +∼ Y containing no non-collider in Z

and no collider not in An(X ∪Y ∪ Z).
(ads-p-pAnXY) There exists an ads-path X +∼ Y containing no non-collider in Z

and no collider not in pAn(X∪Y∪Z).
(ds-w-Z) There exists a ds-walk X +∼ Y containing no non-collider in Z

and no collider not in Z.
(ds-w-An) There exists a ds-walk X +∼ Y containing no non-collider in Z

and no collider not in An(Z).
(ds-w-pAn) There exists a ds-walk X +∼ Y containing no non-collider in Z

and no collider not in pAn(Z).
(ds-w-AnXY) There exists a ds-walk X +∼ Y containing no non-collider in Z

and no collider not in An(X ∪Y ∪ Z).
(ds-w-pAnXY) There exists a ds-walk X +∼ Y containing no non-collider in Z

and no collider not in pAn(X∪Y∪Z).
(ads-w-Z) There exists an ads-walk X +∼ Y containing no non-collider in Z

and no collider not in Z.
(ads-w-An) There exists an ads-walk X +∼ Y containing no non-collider in Z

and no collider not in An(Z).
(ads-w-pAn) There exists an ads-walk X +∼ Y containing no non-collider in Z

and no collider not in pAn(Z).

25

SEPARATION: AN ALGORITHMIC FRAMEWORK

(ads-w-AnXY) There exists an ads-walk X +∼ Y containing no non-collider in Z

and no collider not in An(X ∪Y ∪ Z).
(ads-w-pAnXY) There exists an ads-walk X +∼ Y containing no non-collider in Z

and no collider not in pAn(X∪Y∪Z).

Proof. (def) ⇔ (ds-p-An): This is the definition of d-separation in chain graphs resp. m-
separation in ancestral graphs.

(ds-w-pAnXY)⇒ (ds-w-Z): (ads-w-pAnXY)⇒ (ads-w-Z): Every subwalk B → C ← D
with a collider C can be replaced by B → C ∗→−− V ∗←−− C ← D with V ∈ X ∪Y ∪ Z such that
all non-colliders between C and V are not in Z. Due to Lemma 3.1 (in RCGs) or Lemma 3.2
(in AGs), the subwalk can again be replaced by B +→ V +← D. This replacement is of (almost)
definite status since only directed edges pointing away from the path are added. After truncating
the walk to start at its last node in X and end at the next node in Y, all colliders are in Z.

(w-AntXY)⇒ (w-Z): Every collider C on the walk can be replaced by a walk C ∗→−− V ∗←−− C
with V ∈ X∪Y∪Z such that all non-colliders between C and V are not in Z. After truncating
the walk to start at its last node in X and end at the next node in Y, all colliders are in Z. (for
ancestral graphs this is also Lemma 3.14 in [RS02].)

(ads-w-Z)⇒ (ads-p-An): This is Lemma 3.11.
(ads-p-An)⇒ (ds-p-An): This is Lemma 3.9.
This completes the proof together with the trivial directions that definite status implies

almost definite status, paths are walks, and Z ⊆ An(Z) ⊆ An(X∪Y ∪Z) ⊆ pAn(X∪Y ∪Z).
Every case trivially implies case (ads-w-pAnXY) and is trivially implied by either (ds-p-An) or
(ds-w-Z), and we have just shown (ads-w-pAnXY)⇒ (ads-w-Z)⇒ (ads-p-An)⇒ (ds-p-An)⇒
(ds-w-pAnXY)⇒ (ds-w-Z).

3.1.3 Augmentation and Moralization

D-separation and m-separation are not monotonic, that is, adding a node to a separating set
can unblock a path and result in a non-separating set, while removing it again can turn a non-
separating set into a separating set. Often it is helpful to have a monotonic separation criterion,
e.g., for finding minimal separating sets by removing all nodes until no further node can be
removed without opening a path. In DAGs, a commonly used criterion is separation in the
moral graph whereby the DAG is converted to an undirected graph – the moral graph – in which
d-separation becomes equivalent to an st-vertex cut [LS88; Lau+90]. This generalizes well to
AGs and RCGs. We will introduce the definition of the moral graph step by step:

Lemma 3.13. If w : X ∗∼ Y is an almost definite status walk active given Z in an RCG or AG,
all nodes of w are in pAn(X ∪Y ∪ Z).

Proof. For AGs, this is Lemma 3.13 in [RS02]. For RCGs, let w be a walk with a node
V /∈ pAn(X ∪Y ∪ Z). Assume V is the first such node and U the preceding node. Then V
is a child of U . The walk does not contain U → V −− as it is of almost definite status, nor
U → V ←, since V is not an ancestor of Z. For the same reasons, the walk does not contain
U → V +→−− or U → V +→←. Hence, it ends with U → V +→ Y , and V is an ancestor
of Y .

So Lemma 3.13 says all nodes outside of pAn(X∪Y∪Z) can be ignored, and Lemma 3.12
says all colliders within pAn(X∪Y∪Z) cannot block the path, which implies the only relevant

26

3.2. ALGORITHMS FOR SEPARATORS

G:

X

Z1 Z2

Y

V1

V2

GpAn(X∪Y∪M):

X

Z1 Z2

Y

V1

GapAn(X∪Y∪M):

X

Z1 Z2

Y

V1

Figure 3.2: The transformation of a graph G to GpAn(X∪Y∪M) to (GpAn(X∪Y∪M))
a with M = ∅.

The separating set {Z1, Z2} is not minimal as no node is reachable from both X and Y, but
each node alone, {Z1} or {Z2}, is a minimal separator.

nodes are non-colliders in pAn(X∪Y∪Z). Hence, in the subgraph GpAn(X∪Y∪Z), the separation
criterion can be simplified to “A path is active if and only if no non-collider is in Z”.

It can be simplified even further to “A path is active if and only if it contains no node in Z”
if we ensure that the path contains no colliders. For this, we insert an undirected edge between
every two nodes that can be connected by a path on which every node is a collider as shown in
Figure 3.2. Then all colliders on any path can be replaced by this undirected edge, so, for any
path, there exists an equivalent path without colliders.

Definition 3.14. The augmented graph (G)a of a certain mixed graph G is an undirected graph augmented graph

with the same nodes as G whose edges are all pairs of nodes that are collider connected in G.

In DAGs or RCGs, every collider on a path is a child of two parents that are both adjacent
to the collider on the path. Thus, constructing the augmented graph inserts an edge between
those parents, and one could also say the parents are getting married because they have a child.
Hence, the augmented graph is also called the moral graph and its construction moralization. moral graph

moralization

Lemma 3.15. Given an AG or RCG G and three disjoint sets X, Y, and Z, set Z separates X
and Y in G if and only if Z intersects every path between X and Y in (GpAn(X,Y,Z))

a.

Because the augmented graph is an undirected graph, vertex cuts in the augmented graph
are monotonic.

Since separation in the moral graph is equivalent to d/m-separation, both approaches can be
used as the canonical separation criterion in causal graphs. [RS02] has shown that moralization
works in ancestral graphs. Some authors [Fry90; BS95] define separation of chain graphs only
in terms of moralization. The fact that we can moralize restricted chain graphs, shows that the
definition of separation with (almost) definite status paths is equivalent to their definitions.

3.2 Algorithms for Separators

In this section, we present algorithms that test, find, and enumerate sets Z that separate sets X
and Y under a constraint I ⊆ Z ⊆ R given disjoint node sets X,Y, I,R in an AG or RCG.

In later chapters, when using these algorithms for adjustment sets, the constraint given by the
set R corresponds to the nodes forbidden by the condition (a) of the criterion (Definition 4.33).
The constraint given by I helps to enumerate all such sets.

27

SEPARATION: AN ALGORITHMIC FRAMEWORK

3.2.1 Reachability Algorithm

The reachability problem might the most fundamental graph problem and is an important
building block for more complex algorithms. We will use a breadth-first search (BFS) algorithm
throughout this thesis to find all nodes reachable from a node set X in a graph G. Here we give
the pseudocode for BFS as a higher-order function, so we do not have to specify in every later
algorithm how to keep track of visited nodes and edges:

function REACHABLE(G,X, accept)
Q← {(←, X) | X ∈ X } . queue of pairs (type of edge, node) to visit
P← Q . all processed pairs
while Q not empty do

Let (e, T) be a (type of edge, node) pair of Q
Remove (e, T) from Q
for all neighbors N of T do

Let T and N be connected by edge f
if (f,N) /∈ P and accept(e, T, f,N) then

Add (f,N) to Q and P

return {V | (e, V) ∈ P for any edge type e}

Analysis of the Algorithm. Algorithm REACHABLE returns all nodes V ∈ V that are reachable
from a node X ∈ X by a walk w = X ∗∼ V such that function accept returns TRUE for all
subwalks of the form ∼ T ∼ N on the walk← w. Each node is only visited once from each
adjacent edge, so the runtime is O(n+m).

We will use the notation function(·, ·, ·, ·){. . . return . . .} for the function passed to REACH-
ABLE as an actual accept parameter. For example, we can define the trivial functions An, De,
pAn, and pDe using function REACHABLE like this:

function AnG(X)
return REACHABLE(G,X, function(e, U, f, V){return f =←})

function DeG(X)
return REACHABLE(G,X, function(e, U, f, V){return f =→})

function pAnG(X)
return REACHABLE(G,X, function(e, U, f, V){return f ∈ {←,−−}})

function pDeG(X)
return REACHABLE(G,X, function(e, U, f, V){return f ∈ {→,−−}})

The decision variant of the reachability problem, i.e., given V ∈ V, deciding whether
V ∈ REACHABLE(G,X, accept) with a constant time accept function, is NL-complete for
DAGs, where NL denotes the class of problems which can be solved by nondeterministic Turing
machines in logarithmic space [Pap93]. There reachability can be solved by guessing the next
node N nondeterministically. This will also work for AG and RCGs, so all our functions

28

3.2. ALGORITHMS FOR SEPARATORS

only calling REACHABLE are likely also in NL or even NL-complete when formulated as a
decision problem. However, we will not investigate this further, since linear-time algorithms are
more useful than nondeterministic logspace algorithms in practice.

A property of reachability is that if one removes edges from a graph, REACHABLE and
functions defined through REACHABLE like An return fewer nodes.

Claim 3.16. Given a graph G = (V,E), a subgraph G′ = (V′,E′), sets V′ ⊆ V, E′ ⊆
E, X′ ⊆ X ⊆ V′, and functions accept and accept′ s.t. accept(e, U, f, V) always re-
turns TRUE when accept′(e, U, f, V) returns TRUE on all visited walks eUf V , then REACH-
ABLE(G′,X′, accept′) ⊆ REACHABLE(G,X, accept).

Proof. If a node is not visited, it can only lead to further nodes that are not visited, and never to
more visited nodes.

3.2.2 Testing Separators

Problem TESTSEP just requires us to verify the d/m-separation definition for given sets X,Y,Z,
so a simple reachability search implementing the separation rules for almost definite status walks
suffices. Figure 3.3 shows all edge configurations that might occur on a walk between one node
and the next and whether this next node is reachable through the edges. In DAGs, the commonly
used algorithm to test d-separation in this way is the Bayes-Ball algorithm [Sha98], which is
visualized as sending balls through the DAG along the edges. If the next node is reachable, the
ball passes through to it, otherwise the ball is blocked. If the ball moves back to the previously
visited node, it is said to have bounced back.

We obtain the following algorithm for testing whether a given Z separates X and Y:

function TESTSEP(G,X,Y,Z)
accept := function(e, U, f, V){

return (eUf is of almost definite status)
∧ ((U is a collider on eUf ∧ U ∈ Z) ∨ (U is a non-collider on eUf ∧ U /∈ Z))

}
return REACHABLE(G,X, accept) ∩Y = ∅

Analysis of the Algorithm. From the rules in Figure 3.3, it is obvious that the following state-
ment about algorithm TESTSEP holds: The ball only passes through the walk segment of two
consecutive edges if the segment is an almost definite active walk. Due to Lemma 3.12, testing
whether a collider on a walk is in W is equivalent to testing whether it is in An(W). The
correctness follows from the fact that the algorithm searches over all walks starting in X. The
runtime is linear as it only calls REACHABLE.

Proposition 3.17. Using the algorithm above, the task TESTSEP can be solved in timeO(n+m)
in AGs and RCGs.

3.2.3 Finding Separators

The next problem FINDSEP asks to find a set Z separating certain sets X and Y under the
constraint I ⊆ Z ⊆ R. From the moral graph, we know that only the ancestors of X and Y are
relevant, which implies a canonical, closed-form solution for this problem:

29

SEPARATION: AN ALGORITHMIC FRAMEWORK

M /∈ Z:
T

M

O I B U

→→ T

M

O I B U

←→
←←
←↔
←−−

T

M

O I B U

↔→ T

M

O I B U

−−→
−−−−

M ∈ Z:
T

M

O I B U

→←
→↔

T

M

O I B U

T

M

O I B U

↔←
↔↔

T

M

O I B U

Figure 3.3: Expanded rules for Bayes-Ball in AGs and RCGs, listing (in boxes) all combinations
of edge pairs through which the ball is allowed to pass. The Bayes ball starts at the top node
T and passes through the middle node M to one of the bottom nodes {O, I,B, U}. Forbidden
passes are marked in red and crossed out. Here, by a pair of edges, we mean an edge between T
(Top node) and M (Middle node) and M → O (Out-node), resp. M ← I (In-node), M ↔ B
(Bidirected edge), and M −− U (Undirected edge). The figure above shows all possible types of
edges between T and M . We consider two cases: M 6∈ Z and M ∈ Z (gray). The leaving edge
can correspond to the entering edge, i.e., T can belong to {O, I,B, U}, in which case the ball
might return to T , which is called a bouncing ball in the Bayes-Ball algorithm.

Lemma 3.18. Let X,Y, I,R be sets of nodes with I ⊆ R, R ∩ (X ∪Y) = ∅. If there exists
a separator Z0 relative to (X,Y) with I ⊆ Z0 ⊆ R, then Z = pAn(X ∪ Y ∪ I) ∩ R is a
separator relative to (X,Y).

Proof. Let us consider a proper walk w : X +∼ Y not blocked by Z. Due to Lemma 3.13,
w ⊆ pAn(X ∪ Y ∪ Z) = pAn(X ∪ Y ∪ I). If there is just one non-collider on w in R,
Z would block w, so all non-colliders are not in R and thus not in Z0. All colliders are in
pAn(X ∪Y ∪ I) ⊆ pAn(X ∪Y ∪ Z0), so according to Lemma 3.12 Z0 is not a separator.

This lemma generalizes well-known results [SGS01] and adds the constraint I. It yields the
following linear-time algorithm to find a separator relative to (X,Y):

function FINDSEP(G,X,Y, I,R)
R′ ← R \ (X ∪Y)
Z← pAn(X ∪Y ∪ I) ∩R′

if TESTSEP(G,X,Y,Z) then return Z
else return ⊥

Analysis of the Algorithm. The algorithm finds a separator due to Lemma 3.18 and runs in
linear time, since the set pAn(X∪Y∪ I)∩R can be calculated in linear time and the algorithm
TESTSEP runs in linear time as well.

Proposition 3.19. Using the algorithm above, the task FINDSEP can be solved in timeO(n+m)
in AGs and RCGs.

30

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

Set R is required to be disjoint with X and Y because separation of a set Z relative to X,Y
is not defined when Z contains a node of X or Y, so Z is always a subset of R ⊆ V \ (X∪Y).
However, our algorithms still remove X ∪ Y from R as it might prevent bugs in practical
implementations and it is reasonable to find a separator that does not contain the variables to be
separated.

3.2.4 Enumerating All Separators

After finding a single separator, it is also interesting to know which other separators exist and
enumerate all or some of them.

Since there might be an exponential number of separators, it is not possible to list all of
them in polynomial time. For example, a directed path of length k from X to Y can be blocked
by any separator that contains at least one node of the path, so there are 2k − 1 many separators.
Therefore, we aim for polynomial delay time, which means that only polynomial time passes
between the start or the output of a separator and the output of the next separator or the end of
the algorithm. This approach is similar to the st-cut enumeration algorithm by [Tak10].

function LISTSEP(G,X,Y, I,R)
if FINDSEP(G,X,Y, I,R) 6= ⊥ then

if I = R then Output I
else

V ← an arbitrary node of R \ I
LISTSEP(G,X,Y, I ∪ {V },R)
LISTSEP(G,X,Y, I,R \ {V })

Analysis of the Algorithm. Algorithm LISTSEP performs backtracking to enumerate all Z with
I ⊆ Z ⊆ R, aborting branches that will not find a valid separator. Since every leaf of the
implicit search tree will output a separator, the tree height is at most n. The existence check via
the call of FINDSEP takes O(n+m) time, so the delay time of LISTSEP is O(n(n+m)). The
algorithm generates every separator exactly once: if initially I (R, with V ∈ R \ I, then the
first recursive call returns all separators Z with V ∈ Z and the second call returns all Z′ with
V 6∈ Z′. Thus, the generated separators are pairwise disjoint.

Proposition 3.20. Using the algorithm above, the task LISTSEP can be solved with polynomial
delay O(n(n+m)) in AGs and RCGs.

3.3 Algorithms for Minimal and Minimum Separators

Observing variables can be very expensive, so it is desirable to work with separators that contain
no unnecessary nodes. Hence, in this section, we will modify the algorithms of the previous
section to search minimal or minimum sets Z that separate sets X and Y under a constraint
I ⊆ Z ⊆ R given disjoint node sets X,Y, I,R in an AG or RCG.

3.3.1 Weak Minimality versus Strong Minimality

First we need to define the meaning of the terms minimal and minimum precisely. A naive minimal
minimumdefinition could be, a separator Z is minimal if there exists no separator Z′ (Z. However,

this ignores the constraint I. In some situations, removing the nodes of I from Z might lead

31

SEPARATION: AN ALGORITHMIC FRAMEWORK

to a smaller separator, but if someone has included these nodes in I, they probably want those
nodes to be in every smaller separator as well. Hence, it is reasonable to require that Z′ should
satisfy the constraint I ⊆ Z′ ⊆ R. In order to analyze both ideas, we introduce the concept of
M-minimality:

Definition 3.21. For pairwise disjoint X,Y,Z ⊆ V, and a subset M of V, a separator Z
relative to (X,Y) is M-minimal if M ⊆ Z and no set Z′ (Z with M ⊆ Z′ is a separatorM-minimal

relative to (X,Y).

For M = ∅, i.e., ∅-minimal separators, this definition corresponds to the former idea, while
M = I, i.e., I-minimal separators, matches the latter idea.

Definition 3.22. For pairwise disjoint X,Y,Z ⊆ V, and a subset M of V, a separator Z
relative to (X,Y) is M-minimum according to a cost function w : V → R+, if M ⊆ Z andM-minimum

no set Z′ with M ⊆ Z′ and
∑

Z∈Z′ w(Z) <
∑

Z∈Zw(Z) is a separator relative to (X,Y).

If no cost function is given, we mean by a minimum separator minimum according to the
cost function w(v) = 1, i.e. according to the cardinality.

We will also call ∅-minimal (∅-minimum) sets strongly-minimal (strongly-minimum), andstrongly-minimal
strongly-minimum I-minimal (I-minimum) sets weakly-minimal (weakly-minimum).

weakly-minimal
weakly-minimum

Note a subtle, but important difference between weak and strong minimality, the existence
of a weakly-minimal separator does not necessarily imply that a strongly-minimal separator
exists. For instance, in the DAG X → I ← V → Y , set Z = {I, V } is an I-minimal separator
relative to (X,Y), but there exists no strongly-minimal separator Z′, with I ⊆ Z′. On the other
hand, it is easy to see that every strongly-minimal separator Z, with I ⊆ Z, is also an I-minimal
separator and the same holds for the minimum sets.

The difference between I-minimal and strongly-minimal separators Z ⊇ I is also illustrated
in the earlier Figure 3.2. There are exactly two strongly-minimal separating sets: {Z1} and
{Z2}. No other separator will be strongly-minimal regardless of which nodes are added to a
constraining set I. Therefore, for I = ∅, both separators satisfy the constraint, for I = {Z1}
or I = {Z2}, only one of them does and, for I = {Z1, Z2} or V1 ∈ I, no strongly-minimal
separator satisfies it. The constraint I just chooses some separators of a fixed set of strongly-
minimal separators.

On the other hand, when computing an I-minimal separator, we treat the nodes of I as fixed
and search for a minimal separator among all supersets of I. In Figure 3.2, if I is either {Z1},
{Z2} or {Z1, Z2}, then I itself is an I-minimal separator and no other I-minimal separator
exists. If I = {V1}, then {Z1, V1} and {Z2, V1} are I-minimal. This is an easier and in some
sense more natural concept, since it can be modeled by removing the nodes of I from the graph
and searching a minimal separator for the remaining nodes.

From a covariate adjustment perspective, the definition of M-minimality is most meaningful
in the case M = ∅ or M = I. However, our algorithms technically also allow M to lie
“between” ∅ and I or even partly outside M, even though this is less relevant for our application.
For example, if ∅ 6= M ⊂ I, the nodes of M can be ignored for the minimality, while
the nodes of I \M must be unremovable like all nodes in the case of ∅-minimality. In an
example, in Figure 3.2, for M = {V1}, I = {Z1, V1} would only accept {Z1, V1} as a separator.
M = {Z1}, I = {Z1, Z2} would not allow any. Every separator Z is Z-minimal. Without
the condition that an M-minimal separator needs to contain M, every separator would also be
R-minimal and V-minimal.

32

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

The only one of these four variations that appears to be turned into a hard problem by the
restriction Z ⊇ I is computing strongly-minimal separators – we discuss its complexity in detail
in Section 3.3.5. This is a very surprising result since finding objects of minimum costs or sizes
is typically harder than constructing minimal objects.

Thus, some of our efficient algorithms will only work with I-minimal sets. I-minimality
can always be handled by removing the nodes of I from the graph and connecting their former
neighbors before applying the algorithms, but we will show more efficient ways.

3.3.2 Properties of Minimal Separators

Lemma 3.18 gave us a closed-form solution to find a separator, which yields a constraint for
minimal separators:

Corollary 3.23 (Ancestry of minimal separators). Given an AG or RCG G and three sets
X,Y,M, every M-minimal separator Z is a subset of pAn(X ∪Y ∪M).

Proof. Assume there is an M-minimal separator Z with Z 6⊆ pAn(X∪Y∪M). Setting I = M
and R = Z, Lemma 3.18 shows that Z′ = pAn(X ∪Y ∪M) ∩ Z is a separator with M ⊆ Z′.
But Z′ ⊆ pAn(X∪Y ∪M) and Z′ ⊆ Z, so Z 6= Z′ and Z is not an M-minimal separator.

This implies, if I (pAn(X ∪Y ∪M), no M-minimal separator containing I exists.

Corollary 3.24 (Ancestry of minimal separators). Given an AG or RCG G and three sets
X,Y, I, every I-minimal or ∅-minimal separator is a subset of pAn(X ∪Y ∪ I).

Proof. This follows from Corollary 3.23 with M = I or M = ∅. In both cases, we have
pAn(X ∪Y ∪M) ⊆ pAn(X ∪Y ∪ I).

This means that pAn(X ∪Y ∪ Z) = pAn(X ∪Y ∪ I) for every minimal separator Z ⊇ I.
So the moral graph for every minimal separator Z is (GpAn(X∪Y∪Z))

a = (GpAn(X∪Y∪I))
a and

can be constructed without knowing Z. Thus, all problems involving minimal separators can be
solved with corresponding standard algorithms in the undirected, moral graph. However, the
moral graph can have O(n2) many edges, e.g., if there is one node that is a child of all other
nodes. Hence, there are no linear time algorithms using the moral graph, and we will use another
approach to solve the problems.

[TPP98] show that a separator Z in a DAG is minimal if and only if no node Z ∈ Z can be
removed from Z, i.e., iff Z \ Z is not a separator for all Z ∈ Z. This statement appears trivial,
however, it is not, since there might be a separator from which removing any single element
does not result in a separator while removing two elements together still yields a separator. But
there is no such separator. Their result can easily be generalized to AGs or RCGs and then
holds for any separator Z, but the proof is lengthy, so we will only state it for separators Z with
M ⊆ Z ⊆ pAn(X ∪Y ∪M), which only requires a rather short proof.

Lemma 3.25. A separator Z with M ⊆ Z ⊆ pAn(X ∪Y ∪M) is M-minimal if and only if,
for every Z ∈ Z \M, the set Z \ Z is not a separator.

Proof. If there is an Z ∈ Z \M such that Z \ Z is a separator, Z is clearly not M-minimal.
In the other direction, we have Z \ Z is not a separator for every Z ∈ Z \M, so, for each

Z ∈ Z \M, there is a definite status path πZ : X ∗∼ Y that is not blocked by Z \ Z, i.e., every
non-collider is not in Z \ Z and every collider is in An(Z \ Z).

33

SEPARATION: AN ALGORITHMIC FRAMEWORK

Assume Z is not M-minimal, so there is a separator Z′ ⊂ Z with M ⊆ Z′. Let Z ∈ Z \ Z′.
No non-collider of πZ is in Z′ ⊆ Z \Z and every collider is in An(Z \Z) ⊆ pAn(X∪Y∪ (Z \
Z)) = pAn(X ∪Y ∪M) = pAn(X ∪Y ∪Z′), so πZ is not blocked by Z′ due to Lemma 3.12
and Z′ is not a separator. Hence, Z is M-minimal.

Now we show that a separator relative to (X,Y) is minimal iff all its nodes are reachable
from both X and Y. It is easy to see that this is true in an undirected graph, and was used by
[TPP98] and [ZLT14] to find minimal separators in the moral graph. But it also holds in an AG
or RCG:

Lemma 3.26. A separator Z with M ⊆ Z is an M-minimal separator iff, for every Z ∈ Z \M,
there exists an almost definite status path π : X +∼ Z +∼ Y such that every node on π is in
pAn(X ∪Y ∪M) and every non-collider is not in Z \ Z.

Proof. (⇒): Let Z be an M-minimal separator. For every Z ∈ Z \M, the set Z \ Z is not a
separator due to Lemma 3.25, so there is an almost definite status path π : X +∼ Y open given
Z\Z and blocked by Z, i.e., blocked by Z, so Z is a non-collider on π. Every other non-collider
is not in Z\Z or π was already blocked. From Corollary 3.23, we know Z ⊆ pAn(X∪Y∪M),
so all nodes of π are in pAn(X ∪Y ∪ Z) = pAn(X ∪Y ∪M) due to Lemma 3.13.

(⇐): Every node in Z \M is on an almost definite status path in pAn(X ∪Y ∪M), so
Z ⊆ pAn(X ∪ Y ∪M). Let Z ∈ Z \M and π be such a path. Every collider on π is in
pAn(X ∪Y ∪M) = pAn(X ∪Y ∪ (Z \ Z)), so due to Lemma 3.12, Z \ Z does not separate
X and Y, and Z is M-minimal.

Corollary 3.27. A separator Z with M ⊆ Z is an M-minimal separator iff, for everyZ ∈ Z\M,
there exists an almost definite status walk w : X +∼ Z +∼ Y such that every node on w is in
pAn(X ∪Y ∪M) and every non-collider is not in Z \ Z.

Proof. Let Z ∈ Z \M. If there exists such an almost definite status walk w : X +∼ Z +∼ Y,
there exists a corresponding almost definite status path π′ : X +∼ Y due to Lemma 3.11. Every
non-collider on π′ is a non-collider on w (see Lemma 3.11) and is not in Z \Z. Every collider is
in pAn(X ∪Y ∪M), so due to Lemma 3.12, Z \ Z does not block π′ and Z is only a separator
if Z is a non-collider on π′. So Lemma 3.26 applies.

Hence, the problems TESTMINSEP and FINDMINSEP can be solved efficiently by a reach-
ability search that finds walks from X and Y to each node of Z containing only nodes of
pAn(X ∪ Y ∪ Z) and no non-colliders in Z. The resulting reachability rules are shown in
Figure 3.4.

3.3.3 Testing Minimal Separators

Here we provide the function TESTMINSEP which tests if Z is an M-minimal separator relative
to (X,Y) in an AG or RCG G under the constraint I ⊆ Z ⊆ R:

34

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

M /∈ Z:
T

M

O I B U

→→
→←
→↔

T

M

O I B U

←→
←←
←↔
←−−

T

M

O I B U

↔→
↔←
↔↔

T

M

O I B U

−−→
−−−−

M ∈ Z:
T

M

O I B U

→←
→↔

T

M

O I B U

T

M

O I B U

↔←
↔↔

T

M

O I B U

Figure 3.4: Expanded rules for Bayes-Ball in AGs modified to test or find M-minimal separators.
The figure is structured as Figure 3.3, but all nodes are assumed to be in pAn(X ∪Y ∪M).

function TESTMINSEP(G,X,Y,Z,M, I,R)
if I 6⊆ Z ∨ Z 6⊆ R then return FALSE

A := pAn(X ∪Y ∪M)
if Z * A then return FALSE

accept := function(e, U, f, V){
return V ∈ A ∧

eUf is of almost definite status ∧
(U is a collider on eUf ∨ U /∈ Z)

}
WX := REACHABLE(G,X, accept)
if WX ∩Y 6= ∅ then return FALSE

if Z \M * WX then return FALSE

WY := REACHABLE(G,Y, accept)
if Z \M * WY then return FALSE

return TRUE

Analysis of the Algorithm. TESTMINSEP first checks the basic constraints I ⊆ Z ⊆ R and
the constraint Z ⊆ pAn(X ∪ Y ∪M) from Corollary 3.23. REACHABLE finds all nodes
that are reachable from X (Y) by almost definite status walks that only contain nodes of
A = pAn(X ∪Y ∪M) = pAn(X ∪Y ∪Z) and on which all non-colliders are not in Z. From
Lemma 3.12 and Lemma 3.13, it follows Z is a separator if and only if WX contains no node
of Y (alternatively and equivalently: WY contains no node of X).

Then the algorithm returns TRUE iff Z\M ⊆WX∩WY , which means, for eachZ ∈ Z\M,
there exist almost definite status walks X +∼ Z and Z +∼ Y through A on which each non-
collider is not in Z, i.e., all non-colliders of the combined walk X +∼ Z +∼ Y are not in Z \ Z
(under the assumption that X,Y,Z are disjoint sets), and, according to Corollary 3.27, the set
Z is M-minimal.

The algorithm runs in O(n + m) as it only uses elementary set operations and calls to
REACHABLE.

35

SEPARATION: AN ALGORITHMIC FRAMEWORK

By setting the parameter M = I, the algorithm tests I-minimality of Z. By setting M = ∅,
the algorithm tests strong-minimality.

Proposition 3.28. Using the algorithm above, the task TESTMINSEP, both for testing I-
minimality and ∅-minimality, can be solved in time O(n+m) in AGs and RCGs.

3.3.4 Finding Weakly-Minimal Separators

Next we give an algorithm to find an I-minimal separator:

function FINDMINSEP(G,X,Y, I,R)
A := pAn(X ∪Y ∪ I)
Z′ := R ∩ (A \ (X ∪Y))
accept := function(e, U, f, V){

return V ∈ A ∧
eUf is of almost definite status ∧
(U is a collider on eUf ∨ U /∈ Z′)

}
Z′′ := Z′ ∩ REACHABLE(G,X, accept) ∪ I
accept := function(e, U, f, V){

return V ∈ A ∧
eUf is of almost definite status ∧
(U is a collider on eUf ∨ U /∈ Z′′)

}
Z := Z′′ ∩ REACHABLE(G,Y, accept) ∪ I
if not TESTSEP(G,X,Y,Z) then return ⊥
return Z

Analysis of the Algorithm. FINDMINSEP always returns a set if X and Y are separable. Z′ is
a separator according to Lemma 3.18. Z′ contains I since I ⊆ R should be disjoint from
X ∪Y. All nodes removed during the construction of Z′′ (Z) are not reachable from X (Y) by
connected walks, so they cannot block a walk and the set remains a separator after their removal.

The set Z returned by the algorithm is a separator with I ⊆ Z ⊆ R. All nodes in Z \ I are
reachable from X and Y by a walk through pAn(X ∪Y ∪ I) = pAn(X ∪Y ∪ Z) on which
every non-collider is not in Z, since all non-reachable nodes are removed and the reachable
nodes are not affected by removal of non-reachable nodes. Thus, Z is I-minimal according to
Corollary 3.27.

The algorithm runs in O(n + m) as it only uses elementary set operations and calls to
REACHABLE or TESTSEP.

Proposition 3.29. The algorithm above finds an I-minimal separator Z with I ⊆ Z ⊆ R in
time O(n+m) in AGs and RCGs.

Algorithm FINDMINSEP finds an I-minimal separator. Note that setting the argument I of
the algorithm to ∅ does not lead to a strongly-minimal separator Z that satisfies the constraint
I ⊆ Z ⊆ R for a given non-empty set I.

36

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

X

Y

I1

V1,l V1,r

V1 V 1

Y

I2

V2,l V2,r

V2 V 2

Y

I3

V3,l V3,r

V3 V 3

. . .

I ′1 I ′2 . . .

Figure 3.5: The graph used in the proof of Proposition 3.31, which represents the first three
variables V1, V2, V3, and two clauses (V 1 ∨ V2 ∨ V3) and (V 1 ∨ V 2 ∨ V 3). All shown Y nodes
can be considered to be a single node Y , but we display them separately to reduce the number
of overlapping edges in the figure.

Claim 3.30. Given a graph G = (V,E), a subgraph G′ = (V′,E′), sets V′ ⊆ V, E′ ⊆ E,
and X,Y ⊆ V′, then FINDMINSEP(G′,X,Y, I,R) ⊆ FINDMINSEP(G,X,Y, I,R).

Proof. This follows from Claim 3.16. But note that when edges are removed from G to form G′,
the sets A and Z′ calculated using G′ can contain fewer nodes than the sets calculated using
G. Then function accept might return TRUE on some node U /∈ Z′ in G′ on which it returns
FALSE in G, which would prevent the application of Claim 3.16. But since this only happens on
nodes also removed from A, these nodes are not visited anyways and do not affect the returned
set Z.

3.3.5 The Hardness of Strong-Minimality

For most problems, it is easier to find a minimal solution than a minimum one, but for separators
the opposite is true. If a strongly-minimum separator exists, it is also strongly-minimal. However,
there is a gap where no strongly-minimum separator exists and the I-minimum or I-minimal
separators are not strongly-minimal.

We now show that it is hard to find a strongly-minimal separator even for singletons X
and Y in DAGs. Due to the equivalence between d-separation and vertex separators in the
moral graph, this implies that it is also NP-hard to find strongly-minimal vertex separators in
undirected graphs. Together with the characterizations of adjustment sets in the coming sections,
it will follow that it is also NP-hard to find strongly-minimal adjustments in DAGs or ancestral
graphs.

Proposition 3.31. It is an NP-complete problem to decide whether, in a given DAG, there exists
a strongly-minimal d-separating set Z containing I.

Proof. The problem is in NP since verifying I ⊆ Z is trivial for a given Z and the strong-
minimality can be efficiently tested by algorithm TESTMINSEP with parameter I = ∅.

37

SEPARATION: AN ALGORITHMIC FRAMEWORK

To show the NP-hardness, we take an instance of 3-SAT, a canonical NP-complete problem
[GJ79a], and construct a DAG G and a set I such that a strongly-minimal d-separating set
containing I exists in G if and only if the 3-SAT formula is satisfiable.

The 3-SAT instance consists of k variables V1, . . . , Vk, and ` clauses Ci = (Wi,1 ∨Wi,2 ∨
Wi,3) of literalsWi,j ∈ {V1, . . . , Vk, V 1, . . . , V k}. It is NP-hard to decide whether there exists a
Boolean assignment φ : {V1, . . . Vk} → {TRUE, FALSE} that satisfies the formula C1∧ . . .∧C`.

The basic idea of the construction is to ensure that any separator must contain some nodes
to block a path between X and Y , while no separator can contain all those nodes, because all
nodes together would block all paths from X to nodes in I making the separator not I-minimal.
Choosing a node for inclusion in the separator will correspond to choosing an assignment to a
variable of the 3-SAT problem.

Let G = (V,E) be defined as:

V = {X,Y } ∪ {Vi,l, Vi,r, Vi, V i, Ii | i ∈ {1, . . . , k}} ∪ {I ′i | i ∈ {1, . . . , `}}.
E = {X ← Vi,l → Vi → Y | i ∈ {1, . . . , k}}

∪ {X ← Vi,r → V i → Y | i ∈ {1, . . . , k}}
∪ {Ii → Vi,l, Ii → Vi,r, Ii → Y | i ∈ {1, . . . , k}}
∪ {I ′i → X | i ∈ {1, . . . , `}}
∪ {Wi,j → I ′i | i ∈ {1, . . . , `},Wi,j ∈ Ci}.

I = {Ii | i ∈ {1, . . . , k}} ∪ {I ′i | i ∈ {1, . . . , `}}.

The resulting graph is shown in Figure 3.5. We identify the literal Vi (V i) in the formula
with the node Vi (V i) in the graph. Vi,l (Vi,r) is a left (right) node, , l in the index should not be
confused with the number of clauses `.

(⇐): Let φ be a Boolean assignment that satisfies the formula. Let

Z = I ∪
{Vi, Vi,r | i ∈ {1, . . . , k}, φ(Vi) = FALSE} ∪
{V i, Vi,l | i ∈ {1, . . . , k}, φ(Vi) = TRUE}.

To show that Z d-separates X and Y , we begin a breadth first search at X and enumerate all
reachable nodes. Immediately reachable are nodes I ′i, but they are in I ⊆ Z, so the path stops
there. Each parent Vi,l is reachable, but we have either Vi,l ∈ Z or Vi ∈ Z, so the path stops
either at the parent Vi,l, the next node Vi, or at Ii ∈ Z.

Z is also strongly-minimal: If Vi ∈ Z, then Vi,l /∈ Z and Z \ {Vi} would not block the
path X ← Vi,l → Vi → Y . A similar path would be opened by removing V i, Vi,l or Vi,r.
Z \ {Ii} is not a separator as it would not block either the path X ← Vi,l → Ii → Y or
X ← Vi,r → Ii → Y . If a clause Ci is satisfied by a literal Vj , Z \ {I ′i} is not a separator, as
it would not block the path X ← I ′i ← Vj → Y . Likewise, X ← I ′i ← V j → Y would be
opened by removing I ′i if the clause Ci is satisfied by a literal V j .

Therefore, Z is a strongly-minimal separator.
(⇒): Now we show that a strongly-minimal separator Z yields a satisfying assignment φ.

For every i, the two paths X ← Vi,l → Vi → Y and X ← Vi,r → V i → Y need to be
blocked by a node of {Vi,l, Vi} and a node of {Vi,r, V i}. If neither Vi nor V i are in Z, both
Vi,l and Vi,r must be in Z, so Ii is not reachable from X , Z \ {Ii} is a separator, and Z is not
strongly-minimal. Therefore, Vi or V i is in Z, and the following Boolean assignment φ to the
variables is well-defined:

38

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

φ(Vi) =


TRUE Vi /∈ Z,

FALSE V i /∈ Z,

FALSE otherwise.

Since I ′i ∈ I for all i, I ′i has to be reachable from Y , so there is an open path I ′i ← Vj → Y
(or I ′i ← V j → Y) and Vj (or V j) is not in Z for some j. This Vj (or V j) satisfies clause Ci
according to the definition of φ. Hence, every clause and the formula are satisfiable.

3.3.6 Augmentation and Moralization

As mentioned after Corollary 3.24, the moral graph of any minimal separator Z containing I
is (GpAn(X∪Y∪I))

a, so it can be constructed without knowing Z. This also holds for minimum
separators since every minimum separator is minimal.

However, constructing the augmented graph according to its definition and searching a
collider connected path for all pairs of nodes would have a suboptimal runtime of O(n2m) in
ancestral graphs. Therefore, we will describe an asymptotically optimal (linear time in output
size) moralization algorithm for AGs (and RCGs). Although it was deemed too slow compared
to the linear-time algorithms for testing and finding minimal separators, there might be other
problems involving minimal separators which might have an easier solution in undirected graphs
than in an RCG or AG, e.g., problems involving minimum separators.

Lemma 3.32 (Efficient AG moralization). Given an AG or RCG G, the augmented graph (G)a

can be computed in time O(n2).

Proof. The algorithm proceeds in four steps.

1. Start by setting (G)a to the skeleton of G.

2. Partition G in all its maximal bidirectionally connected components.

3. For each pair (U, V) of nodes from the same component, add the edge U −− V to (G)a if
it did not exist already.

4. For each component, identify all its parents and link them all by undirected edges in (G)a.

Now two nodes are adjacent in (G)a if and only if they are collider connected in G. All four
steps can be performed in time O(n2).

The constraint I ⊆ Z ⊆ R can be handled by removing the nodes of I and outside R
from the graph as shown in Figure 3.6, similarly to the approach in [ADC96]. After the
removal of nodes outside R, their former neighbors need to be connected, which requires time
O(|V \R| · |Ne(V \R)|2) = O(n3), so this removal of nodes outside R only makes sense for
slow algorithm like algorithm LISTMINSEP in Section 3.2.4.

3.3.7 Enumerating Weakly-Minimal Separators

Algorithm LISTSEP for non-minimal separators can enumerate a huge amount of uninteresting
separators. For example, when it lists l separators in a graph G and we add k independent nodes
without any edges to create a graph G′ = G ∪ {V ′1 , . . . , V ′k}, LISTSEP will list 2kl separators

39

SEPARATION: AN ALGORITHMIC FRAMEWORK

V and its neighbors Ne(V) in Ga:

V

N M

O P

Case: V ∈ I

V

N M

O P

Case: V /∈ R

V

N M

O P

Figure 3.6: This figure explains the removal of nodes in I and outside of R from the augmented
graph (GpAn(X∪Y∪I))

a. Shown is an example node V with all its neighbors in the augmented
graph. In the case V ∈ I, the node V blocks all paths through V , so the second graph obtained
by removing V has no remaining edges. In the case V /∈ R, no path is blocked by V , so after
removing the node, all its neighbors need to be linked to preserve the connectivities as shown in
the third graph.

for G′, each original separators combined with all 2k subsets of {V ′1 , . . . , V ′k} despite the nodes
{V ′1 , . . . , V ′k} being completely irrelevant for separation. Hence, it is usually more useful to
enumerate only minimal separators in practice even though there are still exponential many
minimal separators. For example, a minimal separator must contain either V or V ′ on every
path X ← V ← V ′ ← Y between X and Y , so a graph containing k such paths will have at
least 2k different minimal separators.

One could assume naively that replacing FINDSEP with FINDMINSEP in LISTSEP will
enumerate minimal separators. However, this replacement does not change the output of the
algorithm and it will list the very same separators, since a weakly-minimal separator exists if
and if only any separator exists. Such a replacement might work with a function that finds a
strongly-minimal separator, but since finding a strongly-minimal separator is NP-complete, this
is not feasible.

So we will use Takata’s algorithm [Tak10] that enumerates all separators of an undirected
graph in O(nm) delay time and O(n) space after converting the AG or RCG to the moral graph.
However, since the number of edges in the moral graph can be quadratic in the number of nodes,
this leads to a delay time complexity of O(n3).

function LISTMINSEP(G,X,Y, I,R)
G′ := GpAn(X∪Y∪I)
G′a := (GpAn(X∪Y∪I))

a

Add a node Xm connected to all X nodes.
Add a node Y m connected to all Y nodes.
Remove nodes of I.
Remove nodes of V \R connecting the neighbors of each removed node.
Use the algorithm in [Tak10] to list all sets separating Xm and Y m.

Analysis of the Algorithm. The correctness is shown by [TL11] for adjustment sets and gen-
eralizes directly to separators, because after moralization, both problems are equivalent to
enumerating vertex cuts of an undirected graph. The handling of I is shown by [ADC96].

Proposition 3.33. The task LISTMINSEP can be solved with polynomial delay O(n3) in AGs
and RCGs.

40

3.3. ALGORITHMS FOR MINIMAL AND MINIMUM SEPARATORS

3.3.8 Finding Minimum Separators

Finally, we consider the problem FINDMINCOSTSEP to find a minimum separator, for situations
where even a minimal separator contains too many nodes. Thereby each node V is associated
with a cost w(V) given by a cost function w : V→ R+ and the task is to find a set Z separating
X and Y which minimizes the total cost

∑
Z∈Zw(Z) under the constraint I ⊆ Z ⊆ R. In order

to find a separator of minimum size, we can use a function w(V) = 1 ∀V ∈ R that assigns unit
cost to each node. Alternatively, we might want to find a separator that minimizes the cost of
measuring the variables in the separator or that minimizes the number of combinations that the
values of these variables can take. When each node V corresponds to a random variable that
can take kV different values, there are

∏
V ∈V kV combinations, which can be minimized by a

logarithmic cost function w(V) = log kV ∀V ∈ R.
We again construct the augmented graph and can afterward solve the problem with any

weighted min-cut algorithm.

function FINDMINCOSTSEP(G,X,Y, I,R, w)
G′ := GpAn(X∪Y∪I)
G′a := (GpAn(X∪Y∪I))

a

Add a node Xm connected to all nodes in X, and a node Y m connected to all nodes in Y.
Assign infinite cost to all nodes in X ∪Y ∪ (V \R) and cost w(Z) to every other node Z.
Remove all nodes of I from G′a.
return a minimum vertex cut Z separating Xm and Y m in the undirected graph.

Analysis of the Algorithm. The correctness follows from the fact that a minimum set is a min-
imal set and the minimum cut found in the ancestor moral graph is therefore the minimum
m-separating set. The minimum cut can be found using a maximum flow algorithm in O(n3)
due to the well-known min-cut-max-flow theorem [Eve79, Chapter 6].

Proposition 3.34. The algorithm above solves in time O(n3) the task FINDMINCOSTSEP in
case of I-minimality in AGs and RCGs.

The runtime primarily depends on the used min-cut/max-flow algorithm. Using a state-
of-the-art max-flow algorithm by Orlin improves the runtime to O(nma) [Orl13], although
this is not necessarily an improvement in our setting, because the augmented graph can have
ma = O(n2) edges and then O(nma) and O(n3) are the same. Faster max-flow algorithms are
also known for specific graph classes or specific cost functions. In the special case of a unit cost
function w(V) = 1 on undirected graphs, an O(ma

√
n) algorithm is known [Eve79], which

is not directly applicable, since algorithm FINDMINCOSTSEP changes the nodes X ∪ Y ∪
(V \R) to have infinite costs. However, we can apply the max-flow algorithm to a new graph
containing only nodes in R′ = (R \ (X ∪Y)) ∩ pAn(X ∪Y ∪ I) by removing the nodes of
V \R iteratively in O((n− |R|)n2) as shown in Figure 3.6 or by creating a new graph only
containing those nodes in O(|R′|ma) as described in [TPP98], resulting in a total runtime of
O(min((n− |R|)n2, |R′|ma) +ma

√
|R′|) = O(|R′|ma) for a unit cost function.

The set Z returned by algorithm FINDMINCOSTSEP is both weakly-minimum and strongly-
minimum unless no strongly-minimum set Z exists under the given constraints I ⊆ Z ⊆ R.
To see this assume Z is not strongly-minimum and there exists a strongly-minimum set Z′

satisfying the constraint. Then
∑

Z∈Z′ w(Z) <
∑

Z∈Zw(Z). But Z′ satisfies I ⊆ Z′, so Z was
not I-minimum, a contradiction.

41

SEPARATION: AN ALGORITHMIC FRAMEWORK

All strongly-minimum sets for a graph have the same minimum sum
∑

Z∈Zw(Z), regardless
of the constraint I, so we can test if the set returned by FINDMINCOSTSEP is strongly-minimum
by finding one strongly-minimum set Z′ and testing whether

∑
Z∈Zw(Z) =

∑
Z∈Z′ w(Z).

Such a strongly-minimum set Z′ can be obtained by calling FINDMINCOSTSEP again with
parameter I = ∅. Although Z′ might not fulfill the constraint I ⊆ Z′, it has the same required
cost. Thus, we get the following:

Proposition 3.35. Finding a separator Z, with I ⊆ Z ⊆ R, that is strongly-minimum can be
done in time O(n3) in AGs and RCGs.

The same arguments as above show that Z is M-minimum for any M ⊂ I if an M-minimum
separator satisfying the constraints exists.

This is a surprising result since finding objects of minimum costs or sizes is, typically, harder
than constructing minimal objects because a minimum object is also minimal. The explanation
is that in the instances where it is hard to decide whether a strongly-minimal separator exists or
not, no strongly-minimum separator exists.

3.4 Relating Chain Graphs and Restricted Chain Graphs

All the above algorithms were specified to solve problems in restricted chain graphs, which
covers the common classes of DAGs and CPDAGs, but these algorithms cannot be applied to
general chain graphs where Lemma 3.1 does not hold. So when an arbitrary chain graph G is
given, we first need to verify that G is either an RCG or can be converted to one.

Subsection 3.4.1 explains how to test whether G is an RCG, and Subsection 3.4.2 gives an
algorithm to perform the conversion for CGs that are not RCGs.

3.4.1 Recognizing Restricted Chain Graphs

Let us first mention a clever way to recognized CPDAGs. Because every class of Markov
equivalent DAGs is represented by a unique CPDAG, it is possible to test whether a given chain
graph G is a CPDAG by finding one consistent DAG extension D of G, generating the CPDAG
G′ for D and comparing the resulting graph G′ with G. Graph G is a CPDAG if and only if
G = G′. Using the CG-to-DAG conversion algorithm of [AMP97] and the DAG-to-CPDAG
conversion of [Chi95], this can be done in time O(m log n). Alternatively, if the degree of
the graph is bounded by a constant k, the algorithm of [Chi02] decreases the running time to
O((n+m)k2).

However, to recognize RCGs such an approach does not work and one needs to test the
conditions of an RCG directly. The first property – the chordality of components – can be tested
with a lexicographic breadth-first search in linear time [RTL76]. A naive test of the second
condition, that A→ B −− C does not exist as an induced subgraph, is possible in time O(nm).
But there is also a more sophisticated method:

Let D, U , and M be three adjacency matrices corresponding to directed, undirected, resp.
missing edges:

D[i, j] =

{
1 if i→ j ∈ E,

0 otherwise.

U [i, j] =

{
1 if i −− j ∈ E,

0 otherwise.

42

3.4. RELATING CHAIN GRAPHS AND RESTRICTED CHAIN GRAPHS

M [i, j] =

{
1 if i and j are unconnected,
0 otherwise.

The trace of the product Tr[D · U ·M] is zero if and only if the second condition above
is satisfied by the graph, since it corresponds to cycles i → j −− k -no-edge- i. Thus,
this second condition can be verified in time O(nα), with α < 2.373 [LG14], using a fast
matrix multiplication algorithm. This dominates the time complexity of the whole recognition
algorithm.

3.4.2 Reducing a Chain Graph to a Restricted Chain Graph

If a given chain graph G is not a restricted chain graph, our algorithms can only be used after
G has been converted to an RCG. The idea is simple: when G contains an induced subgraph
A→ B −− C, no represented DAG can contain A→ B ← C, since that would be an additional
v-structure. Hence, replacing every induced subgraph A→ B −− C with A→ B → C either
yields a restricted chain graph or G represents no causal model, that is, CE(G) = ∅. The proof
requires some lemmas:

Lemma 3.36. Let G be a chain graph and let Gr be obtained from G after a single application
of the rule A → B −− C ⇒ A → B → C. If G and Gr have the same v-structures, then
CE(G) = CE(Gr); otherwise, if G and Gr do not have the same v-structures, then CE(G) = ∅.

Proof. Every DAG D ∈ CE(G) has the same v-structures as G, so if A→ B −− C occurs in G,
D cannot contain A→ B ← C. Thus, D must contain A→ B → C. If the replacement has
changed the v-structures in Gr, D cannot have the same v-structures as G, and CE(G) = ∅. If
the replacement has not changed them and CE(G) 6= ∅, then CE(G) = CE(Gr) because every
D ∈ CE(G) contains B → C.

If CE(G) = ∅ then, unless a new v-structure is created, CE(Gr) = ∅ since replacing an
undirected edge with a directed one cannot add a DAG to CE(G), .

Lemma 3.37. Let G be a chain graph and let G∗r be the closure of G under the rule A→ B −−
C ⇒ A→ B → C. Then G∗r is a chain graph.

Proof. If G∗r is not a chain graph, the change of an edge B −− C has introduced a semi-directed
cycle. This means there is an undirected cycle containing B −− C in G. Let w : V1 −−
V2

+−− Vk −− V1 with V1 = B, V2 = C be this cycle. The node A cannot be adjacent to any
Vi with an undirected edge or an edge pointing towards A, otherwise A → V1

+−− Vi → A
or A → V1

+−− Vi −− A would have been a semi-directed cycle in G. If Vk is not adjacent
to A, there is the induced subgraph A→ V1 −− Vk and w would not become a semi-directed
cycle. Thus, there is an arrow A → Vk in G, and if A is not adjacent to Vk−1, the induced
subgraph A → Vk −− Vk−1 would have been replaced by A → Vk → Vk−1 in G, preventing
the semi-directed cycle. Inductively, it follows: if there is a Vi not adjacent to A, w will not
become a semi-directed cycle. We know that A is not adjacent to B = V2, and thus G∗r is a
chain graph.

Lemma 3.38. Every chain component of a chain graph G with CE(G) 6= ∅ is chordal.

Proof. This follows from Proposition 4.2 with Remark 4.2 in [AMP97].

43

SEPARATION: AN ALGORITHMIC FRAMEWORK

Now we give the algorithm:

function CONVERT-CG-TO-RCG(G)
while there exists an induced subgraphH : A→ B −− C in G do

if Pa(C) \ Ne(B) 6= ∅ then
return ⊥

ReplaceH with A→ B → C in G
for every chain component C of G do

if C is not chordal then
return ⊥

return the resulting graph G
Analysis of the Algorithm. It follows from Lemma 3.36, Lemma 3.37, and Lemma 3.38 that
the algorithm does not abort with ⊥, if CE(G) 6= ∅, and that CE(R) = CE(G). It is also
guaranteed thatR is an RCG.

The runtime O(deg(G)2m) ≤ O(n4) follows from the straightforward implementation of
the algorithm. Chordality can be tested in linear time by lexicographic breadth-first search
[RTL76].

Proposition 3.39. Let G be a chain graph. If CE(G) 6= ∅, then algorithm CONVERT-CG-TO-
RCG generates an RCGR with CE(G) = CE(R). Otherwise, the algorithm returns ⊥. The
runtime is O(deg(G)2m) ≤ O(n4).

There is no need to consider specific DAG-to-RCG or RCG-to-DAG conversion algorithms
since every DAG is already an RCG and every RCG is a chain graph, so the algorithms cited
above can be used for latter task. For the task RCG-to-CPDAG, the usual DAG-to-CPDAG
algorithms can be used because they always generate and continue on RCGs in intermediate
steps.

3.5 Discussion

We have solved the problems of Table 3.1 for AGs and RCGs, providing efficient algorithms
to find separators as well as minimal and minimum separators. We have generalized existing
algorithms and improved their performance. Many tasks can only be solved by our algorithms,
and on tasks that can be solved by both existing algorithms and our algorithms, our algorithms
have the same or better runtime, so our algorithms are preferable in every situation.

The algorithms are implemented in the open-source software DAGitty [Tex+16].
Like [ADC96; TPP98], we have described an algorithm that finds a minimum separator

using a network flow in the moral graph in runtimeO(n3). It is probably possible to improve this
runtime to O(nm) by searching the paths of the network flow directly in the causal graph using
the same technique we have developed to improve the runtime of the algorithms for minimal
separators. The delay complexity of enumerating minimal separators might be improved
similarly.

A problem that we have ignored is to enumerate all minimum separators. One approach to
solve it could be to enumerate all minimal separators and only output those that are minimum,
although this might lead to a high complexity when many minimal sets need to be discarded
as non-minimum. One could prune the search tree by aborting branches where the cost of the
smallest possible minimal set on that branch is already higher than the cost of an earlier found
minimum separator.

44

4 Identification via Covariate
Adjustment

Covariate adjustment is one of the most widely used techniques to estimate causal effects from
observational data. In this chapter, we leverage the algorithmic framework of Chapter 3 together
with constructive, sound, and complete criteria for covariate adjustment to solve all problems
listed in Table 3.1 for adjustment sets rather than separating sets in the same asymptotic time
(see Table 4.1).

Given nodes sets X and Y in a causal graph, we want to test, find, or enumerate adjustment
sets Z that can identify the causal effect of X on Y. Our constructive criteria reduce tasks
involving adjustment sets to separating sets in a subgraph of the original causal graph, which
allows one to solve all tasks by calling a separation algorithm on the parameters obtained by the
reduction without further modifying the separation algorithm. The reduction removes the first
edge of certain causal paths from X to Y, so after the removal, all remaining paths between X
and Y are biasing paths, which need to be blocked by every adjustment set Z. Furthermore, we
characterize a set of forbidden nodes that cannot be adjusted, so the constraint R is applied to
only return sets Z not containing these forbidden nodes.

Thus, the algorithms can search for adjustment sets Z that are minimal, minimum, or are
bounded by constraining sets I ⊆ Z ⊆ R.

The constraints now have an actual real-life motivation because not all covariates are equally
well suited for adjustment. Some variables might be more difficult to measure than other
variables even if both are equally observed. Measuring certain variables could also be more
expensive or be affected by substantial measurement error. Thus, researchers might prefer
adjustment sets that do not contain certain variables, are minimal, or minimize a user-supplied
cost function. On the other hand, it might be necessary to include some additional variables in I
to increase the precision of the estimation even if the causal effect is theoretically identifiable
without those variables.

For example, in a biological study where one can either adjust for the genes or the resulting
phenotype of an organism, DNA sequencing would be more expensive but give more accurate
results. Which variables the biologist will prefer, depends on the funding available for their
study or if the DNA has already been sequenced for another study, circumstances not modeled
in the graph and thus unknown to our algorithms.

The constraints choose a subclass of the class of all valid adjustment sets for a given graph.
Some variables cannot be used for adjustment at all, because the variables would bias the
estimation. These forbidden variables are not excluded by the constraints of Table 4.1, rather
they are excluded by the requirement to return adjustment sets. Nevertheless, after reducing a
problem involving an adjusting set to the corresponding problem involving separating sets, the
constraints are modified to exclude the forbidden variables from the separating set.

45

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Runtime
Verification: For given X,Y,Z and constraint I, decide whether . . .

TESTADJ Z is an adjustment for (X,Y) O(n+m)
TESTMINADJ Z ⊇ I is an adjustment for (X,Y) and Z is . . .

I-minimal O(n+m)
strongly-minimal O(n+m)

Construction: For given X,Y and constraints I,R, output an . . .
FINDADJ adjustment Z for (X,Y) with I ⊆ Z ⊆ R O(n+m)
FINDMINADJ adjustment Z for (X,Y) with I ⊆ Z ⊆ R which is . . .

I-minimal O(n+m)
strongly-minimal NP-complete

FINDMINCOSTADJ adjustment Z for (X,Y) with I ⊆ Z ⊆ R which is . . .
I-minimum O(n3)
strongly-minimum O(n3)

Enumeration: For given X,Y, I,R, enumerate all . . . Delay
LISTADJ adjustments Z for (X,Y) with I ⊆ Z ⊆ R O(n(n+m))
LISTMINADJ I-minimal adjustments Z with I ⊆ Z ⊆ R O(n3)

Table 4.1: Algorithmic tasks related to adjustment, similar to the definitions of Table 3.1. The
runtimes are shown for DAGs, RCGs, and adjustment amenable MAGs. Other MAGs first need
to be tested for adjustment amenability inO(n(n+m)) time. Chain graphs require a conversion
to an RCG in O(n4) time.

Scientific Contribution. We have generalized the sound and complete adjustment criterion
by [SVR10] from DAGs to MAGs [ZLT14; ZLT19] and to RCGs [ZL16b]. We then apply
our criteria to continue the work of [TL11], and give the first efficient sound and complete
algorithms for adjustment. We summarize our results in Table 4.1

4.1 Preliminaries

Let us recall the definition of adjustment, the full version of Equation 2.3:

Definition 4.1 (Adjustment [Pea09]). Given a causal graph G = (V,E) and pairwise disjoint
sets X,Y,Z ⊆ V, the set Z is called covariate adjustment for estimating the causal effect of X
on Y, or simply adjustment (set), if for every distribution P compatible with G we haveadjustment set

P (y | do(x)) =

{
P (y | x) if Z = ∅,∑

z P (y | x, z)P (z) otherwise.
(4.1)

A probability distribution P is compatible with a DAG D if P factorizes according to D.
P is compatible with a CG C if it is compatible with a (every) DAG D ∈ [C]. P is compatible
with a MAGM if it is the marginal of a distribution P ′ that is compatible with a DAG D′ with
D′[L∅= G for any set of variables L.

In practice, Definition 4.1 cannot be used to actually find an adjustment set as there are
infinitely many probability distributions that are compatible to a certain graph.

46

4.2. ADJUSTMENT IN DAGS

4.2 Adjustment in DAGs

For DAGs, [SVR10] have discovered a characterization of adjustment sets in graphical terms:

Definition 4.2 (Adjustment criterion (AC) [SVR10]). Let G = (V,E) be a DAG and X,Y,Z ⊆
V be pairwise disjoint subsets of variables. The set Z satisfies the adjustment criterion relative adjustment criterion

to (X,Y) in G if

(a) no element in Z is a descendant in GX of any W ∈ V \X which lies on a proper causal
path from X to Y and

(b) all proper non-causal paths in G from X to Y are blocked by Z.

This criterion removes the need to consider infinitely many probability distributions, but the
direct application of it still has to handle exponential many non-causal paths and check all of
them to see if they are blocked.

We address this problem below by presenting a constructive adjustment criterion that reduces
non-causal paths to separation, which allows us to directly apply all algorithms from Chapter 3
for adjustment.

But first we introduce a simpler notation for non-start nodes on a proper causal path from X
to Y:

PCP(X,Y) = {W ∈ V \X |W lies on a proper causal path from X to Y}
= (DeX(X) \X) ∩ AnX(Y).

Then condition (a) in Definition 4.2 can be written as Z ⊆ V \DeX(PCP(X,Y)).
We wonder, why did [SVR10] choose to use GX in Definition 4.2? Is it necessary to

construct this graph or can we use descendants in G?

Lemma 4.3. Let G = (V,E) be an ancestral graph, and let X,Y,Z ⊆ V be pairwise disjoint
subsets of variables such that Z blocks all non-causal paths from X to Y. Let A ⊆ X ∪Y and
B ⊆ X.

Then Z contains no descendant of PCP(X,Y) in G if and only if Z contains no descendant
of PCP(X,Y) in GAB.

Proof. (⇐): In GAB, there can only be fewer descendants since there are fewer edges.
(⇒): Assume the statement is not true and there exist a Z ∈ Z and W ∈ PCP(X,Y) such

that Z is only a descendant of W in G. Then there are causal paths πXY = X +→W ∗→ Y and
πXZ = X +→W +→ Z. We haveW 6= Z since all nodes are their own descendants in any graph.
We can assume the nodes were choosen such that the length of the subpath πXZ [W ∗∼ Z]
betweenW and Z is minimal. This implies that πXZ is not blocked by Z\Z, because otherwise
using the blocking node as Z would lead to shorter paths.

The subpath πXZ [W ∗∼ Z] between W and Z intersects A ∪B as it does not exist in GAB.
Let A ∈ A ∪ B ⊆ X ∪ Y be the node of this intersection closest to W ; unless the closest
node is W = Y ∈ A, then let A be the second closest, because the case Y ∈ A only removes
incoming edges and does not change a path Y ∗→ Z.

If A ∈ X, A 6= W (or πXY would not be proper) and the path A +← W ∗→ Y would be a
unblocked non-causal path. Otherwise, we have A ∈ Y, so A ∈ PCP(X,Y) and the path from
A to Z is shorter than the path from W to Z, so we could use A as W , which contradicts the
choice of W .

47

IDENTIFICATION VIA COVARIATE ADJUSTMENT

G:

X1 X2 D1 Y

Z

V D2 D3

GpbdXY:

X1 X2 D1 Y

Z

V D2 D3

Figure 4.1: A DAG that permits exactly two adjustment sets for estimating the causal effect of
X = {X1, X2} on Y = {Y }: Z = {Z} and Z′ = {Z, V }. The set V \ De(PCP(X,Y)) =
{X1, X2, Z, V }. So, every adjustment is a subset of {Z, V }. The nodes D1, D2, D3 are not
allowed in any adjustment as they are not in {Z, V } – the set of descendants of a non-X node
on the (only) proper causal path X2 → D1 → Y . Moreover, every adjustment must contain the
variable Z to block the path between X2 and Y in GpbdXY.

Hence, from now on we will use the condition Z ⊆ V \ De(PCP(X,Y)) rather than
Z ⊆ V \DeX(PCP(X,Y)) as condition (a).

To obtain a more efficient condition (b), we introduce the proper back-door graph:

Definition 4.4 (Proper back-door graph). Let G = (V,E) be a DAG and X,Y ⊆ V be disjoint
subsets of variables. The proper back-door graph, denoted as GpbdXY, is obtained from G byproper back-door graph

removing the first edge of every proper causal path from X to Y.

Using the set PCP(X,Y) defined above the proper back-door graph can be specified as

GpbdXY = (V,E \ (X→ PCP(X,Y))),

i.e., all edges X → D with D ∈ PCP(X,Y) are removed. Thus, GpbdXY can be constructed in
linear time.

Note the difference between the proper back-door graph GpbdXY and the famous back-door
graph GX of [Pea09]: in GX all edges leaving X are removed while in GpbdXY only those that lie
on a proper causal path (see Figure 4.8 for an example).

Now we propose the following adjustment criterion. For short, we will sometimes denote
the set De(PCP(X,Y)) as Dpcp(X,Y).

Definition 4.5 (Constructive back-door criterion for DAGs (CBC)). Let G = (V,E) be a
DAG and let X,Y,Z ⊆ V be pairwise disjoint subsets of variables. The set Z satisfies the
constructive back-door criterion relative to (X,Y) in G ifconstructive back-door

criterion

(a) Z ⊆ V \ De(PCP(X,Y)) and

(b) Z d-separates X and Y in the proper back-door graph GpbdXY.

Figure 4.1 shows how the constructive back-door criterion can be applied to find an adjust-
ment set in an example DAG.

Theorem 4.6. The constructive back-door criterion (CBC) is equivalent to the adjustment
criterion (AC).

48

4.3. ADJUSTMENT IN MAGS

Proof. Assume conditions (a) and (b) of the adjustment criterion AC hold. Due to Lemma 4.3,
it is sufficient to show that condition (b) of the constructive back-door criterion is satisfied. Let
π be any proper path from X to Y in GpbdXY. Because GpbdXY does not contain causal paths from
X to Y, π is not causal and has to be blocked by Z in G by the assumption. Since removing
edges cannot open paths, π is blocked by Z in GpbdXY as well.

Now we show that (a) and (b) of the constructive back-door criterion CBC together imply
(b) of the adjustment criterion AC. If that were not the case, then there could exist a proper
non-causal path π from X to Y that is blocked in GpbdXY but open in G. There can be two reasons
why π is blocked in GpbdXY: (1) The path starts with an edge X → D that does not exist in GpbdXY.
Then we have D ∈ PCP(X,Y). For π to be non-causal, it would have to contain a collider
C ∈ An(Z)∩De(D) ⊆ An(Z)∩Dpcp(X,Y). But because of CBC (a), An(Z)∩Dpcp(X,Y)

is empty. (2) A collider C on π is an ancestor of Z in G, but not in GpbdXY. Then there must be a
directed path from C to Z via an edge X → D with D ∈ An(Z) ∩ PCP(X,Y), contradicting
CBC (a). So (b) of the AC holds, and so (a) holds as well due to Lemma 4.3.

4.3 Adjustment in MAGs

Next we generalize our complete constructive criterion for identifying adjustment sets from
DAGs to MAGs. Two examples may illustrate why this generalization is not trivial.

First, take G1 = X → Y . If G1 is interpreted as a DAG, then the empty set is valid for
adjustment. If G1 is, however, taken as a MAG, then there exists no valid adjustment set as G1
represents among others the DAG U X Y where U is an unobserved confounder.

Second, take G2 = A→ X → Y . In that case, the empty set is an adjustment set relative
to (X,Y) regardless of whether G2 is interpreted as a DAG or a MAG. G2 does not represent a

DAG like D = A U X Y , because blocking the path A→ X → Y will open the path
A → X ← U → Y . So A and Y cannot be d-separated in D and need to be adjacent in the

representing MAG, i.e., the only MAG representing D is U X Y
The main topic of this subsection is to study the cases in which hidden confounders might

invalidate an adjustment set and in which cases they might not.

Lemma 4.7 (Preservation of separating sets [RS02]). Set Z m-separates X,Y in G[SL if and
only if Z ∪ Sm-separates X,Y in G.

Selection bias (i.e., S 6= ∅) substantially complicates adjustment, and in fact nonparametric
causal inference in general [Zha08]1. Due to these limitations, we restrict ourselves to the case
S = ∅ in the rest of this section. Note, however, that recovery from selection bias is sometimes
possible with additional population data, and graphical conditions exist to identify such cases
[BTP14].

We now extend the concept of adjustment to MAGs in the usual way [MC15].

Definition 4.8 (Adjustment in MAGs). Given a MAG M = (V,E) and two variable sets
X,Y ⊆ V, the set Z ⊆ V is an adjustment set for (X,Y) inM if for all DAGs G = (V′,E′)
for which G[∅L =M with L = V′ \V the set Z is an adjustment set for (X,Y) in G.

1A counterexample is the graph A← X → Y , where we can safely assume that A is the ancestor of a selection
variable. A sufficient and necessary condition to recover a distribution P (y | x) from a distribution P (y | x, s)
under selection bias is Y ⊥⊥ S | X [BTP14], which is so restrictive that most statisticians would probably not even
speak of “selection bias” anymore in such a case.

49

IDENTIFICATION VIA COVARIATE ADJUSTMENT

This definition is equivalent to requiring that P (y | do(x)) is equal to
∑

z P (y | x, z)P (z)
for every probability distribution P (v′) compatible with a DAG G = (V′,E′) for which
G[∅L = M with L = V′ \V. If one was to extend the definition to include selection bias S,
one would need to give a requirement that holds for all DAGs G = (V′,E′) with G[SL = M
and L ∪ S = V′ \V. Thereby one can define P (y | do(x)) as

∑
z P (y | x, z, s)P (z | s) ,∑

z P (y | x, z, s)P (z) or
∑

s

∑
z P (y | x, z, s)P (z, s). The last definition is equivalent to

Z ∪ S being an adjustment set in all these DAGs, but existing literature has used the second
case[BTP14]. However, the first case captures the spirit of selection bias the most since in the
presence of selection bias the probability distribution is only known given some selected bias s.

4.3.1 Adjustment Amenability

In this section, we characterize a class of MAGs in which adjustment is impossible because of
causal ambiguities – e.g., the simple MAG X → Y falls into this class, but the larger MAG
A→ X → Y does not.

Definition 4.9 (Visible edge [Zha08]). Given a MAGM = (V,E), an edge X → D in E is
called visible if in all DAGs G = (V′,E′) with G[∅L= M for some L ⊆ V′, all d-connectedvisible

walks betweenX andD in G that contain only nodes of L∪X∪D are directed paths. Otherwise,
X → D is said to be invisible.invisible

Intuitively, an invisible directed edge X → D means that there may exist hidden con-
founding factors between X and D, which is guaranteed not to be the case if the edge is
visible.

Lemma 4.10 (Graphical conditions for edge visibility [Zha08]). In a MAGM = (V,E), an
edge X → D in E is visible if and only if there is a node A not adjacent to D where (1)
A → X ∈ E or A ↔ X ∈ E, or (2) there is a collider path A ↔ V1 ↔ . . . ↔ Vn ↔ X or
A→ V1 ↔ . . .↔ Vn ↔ X where all Vi are parents of D.

Definition 4.11. We call a MAGM = (V,E) adjustment amenable w.r.t. X,Y ⊆ V if alladjustment amenable

proper causal paths from X to Y start with a visible directed edge.

Lemma 4.12. If a MAGM = (V,E) is not adjustment amenable w.r.t. X,Y ⊆ V, then there
exists no valid adjustment set for (X,Y) inM.

Proof. If the first edge X → D on some causal path to Y inM is not visible, then there exists
a consistent DAG G where there is a non-causal path between X and Y via D that could only be
blocked inM by conditioning on D or some of its descendants. But such conditioning would
violate the adjustment criterion in G.

Note that adjustment amenability does not yet guarantee the existence of an adjustment set;
the smallest example is the MAG X ← Y , which is adjustment amenable but admits no valid
adjustment set.

4.3.2 Auxiliary Lemmas

In this subsection, we present the auxiliary lemmas used in the proof of Theorem 4.29, the main
result of this section about MAGs. For Lemmas 4.21 and 4.25, we also give separate preparing
claims and existing results before stating the lemmas themselves.

50

4.3. ADJUSTMENT IN MAGS

Lemma 3.11 has shown that m-separation can be defined equivalently by paths or by walks,
and Lemma 3.12 that for walks m-separation given a set Z remains the same, regardless if
colliders are defined to be opened by being in Z or being ancestors of Z. Independently from
these previous lemmas, we show now that such an equivalence also holds between proper
non-causal paths and proper non-causal walks as long as Z contains no node of Dpcp(X,Y).

Lemma 4.13. Given a DAG G and sets X,Y,Z ⊆ V satisfying Z ∩ Dpcp(X,Y) = ∅, the
set Zm-connects a proper non-causal path π between X and Y if and only if it m-connects a
proper non-causal walk w between X and Y such that the set w ∩ Z is the set of all colliders
on w.

Proof. (⇐): Let w be the m-connected proper non-causal walk. It can be transformed to an
m-connected path π by removing loops of nodes that are visited multiple times. Since no nodes
have been added, π remains proper, and the first edges of π and w are the same. So if w does
not start with a→ edge, π is non-causal. If w starts with an edge X → D, there exists a collider
with a descendant in Z which is in De(D). So π has to be non-causal, or it would contradict
Z ∩ Dpcp(X,Y) = ∅.

(⇒): Let π be anm-connected proper non-causal path. It can be changed to anm-connected
walk w with w ∩ Z = (colliders of w) by inserting Ci ∗→ Zi

∗← Ci for every collider Ci on
π and a corresponding Zi ∈ Z. Since no edges are removed from π, w is non-causal, but not
necessarily proper, since the inserted walks might contain nodes of X. However, in that case, w
can be truncated to a proper walk w′ starting at the last node of X on w. Then w′ is non-causal
since it contains the subpath X +← Ci.

Before proving Theorem 4.29, let us introduce the concepts of an inducing path and inducing
Z-trail, which we will use in our proof and the further analysis.

Definition 4.14 (Inducing path [RS02]). Let G = (V,E) be a DAG and Z,L ⊆ V be disjoint.
A path π = V1

+∼ Vk+1 in G is called inducing with respect to Z and L if all non-colliders on inducing path

π are in L and all colliders on π are in An({V1, Vk+1} ∪ Z).

Definition 4.15 (Inducing Z-trail). Let G = (V,E) be a DAG and Z,L ⊆ V be disjoint.
Let π = V1

+∼ Vk+1 be a path in G[∅L such that V2, . . . , Vk ∈ Z, V1, Vk+1 /∈ Z, for each
i ∈ {1, . . . , k}, there is an inducing path w.r.t. ∅,L linking Vi, Vi+1, and for each i ∈ {2, . . . , k},
these inducing paths have arrowheads at Vi. Then π is called an inducing Z-trail. inducing Z-trail

In all of the below, G = (V,E) is a DAG, Z,L ⊆ V are disjoint, andM = G[∅L. We notice
first that every inducing path w.r.t. Z and L is m-connected by Z.

Lemma 4.16 ([RS02]). If there is an inducing path π from U ∈ V to V ∈ V with respect to
Z,L, then there exists no set Z′ with Z ⊆ Z′ ⊆ (V \L) such that Z′ d-separates U and V in G
or m-separates U and V in G[∅L.

Proof. This is Theorem 4.2, cases (v) and (vi), in [RS02].

Claim 4.17. Two nodes U, V are adjacent in G[∅L if and only if G contains an inducing path π
between U and V with respect to ∅,L. Moreover, the edge between U, V in G[∅L can only have
an arrowhead at U (V) if all such π have an arrowhead at U (V) in G.

51

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Proof. The first part on adjacency is proved in [RS02]. For the second part on arrowheads,
suppose π does not have an arrowhead at U , then π starts with an edge U → D. Hence,
D /∈ An(U), so D ∈ An(V) because π is an inducing path, and therefore also U ∈ An(V).
Thus, the edge between U and V in G[∅L must be U → V . The argument for V is identical.

Claim 4.18. Suppose Z0 ∼ Z1 ∼ Z2 is a path in G[∅L on which Z1 is a non-collider. Suppose
an inducing path π01 from Z0 to Z1 w.r.t. ∅,L in G has an arrowhead at Z1, and an inducing
path π12 from Z1 to Z2 w.r.t. ∅,L has an arrowhead at Z1. Then the walk w012 = π01π12 can
be truncated to an inducing path from Z0 to Z2 w.r.t. ∅,L in G.

Proof. The walk w012 does not contain more non-colliders than those on π01 or π12, so they
must all be in L. It remains to show that the colliders on w012 are in An(Z0 ∪ Z2). Because Z1

is not a collider on Z0 ∼ Z1 ∼ Z2, at least one of the edges Z0 ∼ Z1 and Z1 ∼ Z2 must be a
directed edge pointing away from Z1. Assume without loss of generality that Z0 ← Z1 is that
edge. Then all colliders on π01 are in An(Z0 ∪ Z1) = An(Z0) ⊆ An(Z0 ∪ Z2), and all colliders
on π12 are in An(Z1 ∪Z2) ⊆ An(Z0 ∪Z2). Z1 itself is a collider on w012 and is also in An(Z0).
Hence, the walk w012 is d-connected, and can be truncated to an inducing path that starts with
the first arrow of π01 and ends with the last arrow of π12.

Claim 4.19. Let π = V1
+∼ Vk+1 be an inducing Z-trail, and let π′ be a subsequence of π

formed by removing one non-collider Vi of π with Vi ∈ Z. Then π′ is an inducing Z-trail.

Proof. According to Claim 4.18, if Vi is a non-collider on π, then Vi−1 and Vi+1 are linked
by an inducing path π that contains an arrowhead at Vi−1 (Vi+1) if Vi−1 ∈ Z (Vi+1 ∈ Z).
Therefore, Vi−1 and Vi+1 are themselves adjacent, π′ is a path, and is a Z-trail.

Corollary 4.20. Every inducing Z-trail π = V1
+∼ Vk+1 has a subpath π′ that is m-connected

by Z.

Proof. Transform π into π′ by replacing non-collider nodes in Z by the direct edge linking their
neighbors until no such node exists anymore. By inductively applying Claim 4.19, we see that
π′ is also an inducing Z-trail, and every node in Z is a collider because otherwise we would
have continued transforming. So π′ must be m-connected by Z.

Lemma 4.21. Let wG be a walk from X to Y in G, X,Y /∈ L, that is d-connected by Z. Let
wM = V1

+∼ Vk+1 be the subsequence of wG consisting only of the nodes inM = G[∅L. Then Z
m-connects X and Y inM via a path along a subsequence w′M formed from wM by removing
some nodes in Z (possibly w′M = wM).

Proof. First, truncate from wM all subwalks between nodes in Z that occur more than once.
Now consider all subsequences V1

+∼ Vl+1, l > 1, of wM where V2, Vn ∈ Z, V1, Vl+1 /∈ Z,
which now are all paths inM. On those subsequences, every Vi must be adjacent in G to Vi+1

via a path containing no colliders, and all internal nodes of that path must be in L. So there are
inducing paths w.r.t. ∅,L between all Vi, Vi+1, which have arrowheads at Vi (Vi+1) if Vi ∈ Z
(Vi+1 ∈ Z). So V1

+∼ Vl+1 is an inducing Z-trail, and has a subpath which m-connects V1, Vl+1

given Z due to Corollary 4.20. Transform wM to w′M by replacing all inducing Z-trails by their
m-connected subpaths. According to Claim 4.17, non-colliders on wM cannot be colliders on
w′M, as bypassing inducing paths can remove but not create arrowheads. Moreover, all nodes in
Z on w′M are colliders. Hence, w′M is m-connected by Z.

52

4.3. ADJUSTMENT IN MAGS

Corollary 4.22. Each edge on w′M as defined above corresponds to an inducing path w.r.t. ∅,L
in G along nodes on wG .

Claim 4.23. Suppose there exists an inducing path π01 from Z0 to Z1 w.r.t. S,L with an
arrowhead at Z1 and an inducing path from Z1 to Z2 w.r.t. S′,L with an arrowhead at Z1.
Then the walk w012 = π01π12 can be truncated to an inducing path from Z0 to Z2 w.r.t.
S ∪ S′ ∪ {Z1},L in G.

Proof. The walk w012 does not contain more non-colliders than those on π01 or π12, so they
must all be in L. All colliders on π0,1 and π1,2 as well as Z1 are in An(Z0, Z1, Z2,S,S

′), and
therefore also all colliders of w012.

Hence, the walk w012 is d-connected, and can be truncated to an inducing path that starts
with the first arrow of π01 and ends with the last arrow of π12.

Claim 4.24. Suppose Z0, Z1, . . . , Zk+1 is a path in G[∅L with an arrowhead at Zk+1 on
which all Z1, . . . , Zk are colliders. Then there exists an inducing path from Z0 to Zk+1 w.r.t.
{Z1, . . . , Zk},L with an arrowhead at Zk+1.

Proof. Because all Zi, Zi+1 are adjacent and all Z1, . . . , Zk are colliders, there exist inducing
paths πi,i+1 w.r.t. ∅,L from Zi to Zi+1 that have arrowheads at Z1, . . . , Zk (Claim 4.17). The
claim follows by repeatedly applying Claim 4.23 to the πi,i+1’s.

Let V1 ∗↔ Vk denote a (possibly empty) walk V1 ∗∼ Vk containing only bidirected edges.

Lemma 4.25. Suppose A→ V1
∗↔ Vk ↔ X → D or A↔ V1

∗↔ Vk ↔ X → D is a path in
G[∅L (possibly k = 0), each Vi is a parent of D and there exists an inducing path πXD from X to
D w.r.t. ∅,L that has arrowheads on both ends. Then A and D cannot be m-separated in G[∅L.

Proof. Assume the path is A → V1
∗↔ Vk ↔ X → D. The case where the path starts with

A↔ V1 can be handled identically since the first arrowhead does not affect m-separation.
Assume A and D can be m-separated in G[∅L, and let Z be such a separator. If V1 is not in Z,

then the path A→ V1 → D is not blocked, so V1 ∈ Z. Inductively, it follows: if Vi is not in Z,
but all ∀j < i : Vj ∈ Z, then the path A→ V1

∗↔ Vi−1 ↔ Vi → D is not blocked, so Vi ∈ Z
for all i.

There exists an inducing path πAX from A to X with an arrowhead at X w.r.t. to
{V1, . . . , Vk},L (Claim 4.24) which can be combined with πXD to an inducing path from
A to D w.r.t. to {V1, . . . , Vk, X},L (Claim 4.23).

Hence, no separator relative to (A,D) can contain {X,V1, . . . , Vk} (Lemma 4.16). Then
there cannot exist a separator, because every separator must include V1, . . . , Vk and the path
A→ V1

∗↔ Vk ↔ X → D is open without X ∈ Z.

4.3.3 Adjustment Criterion for MAGs

We now show that the adjustment criterion for DAGs generalizes to adjustment amenable MAGs.
The adjustment criterion and the constructive back-door criterion are defined like their DAG
counterparts (Definitions 4.2 and 4.5), replacing “DAG” with “MAG” and d- with m-separation
for the latter.

53

IDENTIFICATION VIA COVARIATE ADJUSTMENT

M1:

X V Y

Z
M2:

X V Y

Z
M3:

X V Y

Z
M4:

X V Y

W
M5:

X2

X1 V Y

Z

Figure 4.2: Five MAGs in which we search for an adjustment relative to (X,Y) or
({X1, X2}, Y). M1 and M3 are not adjustment amenable, since the edge X → V is not
visible, so no adjustment exists. In the other three MAGs, the edge is visible because of the node
Z inM2, the node W inM4, and the node X2 inM5. The only valid adjustment inM2 and
M5 is {Z}, and inM4 only the empty set is a valid adjustment. IfM1 andM3 were DAGs,
the set {Z} would be an adjustment in each.

Definition 4.26 (Adjustment criterion). LetM = (V,E) be a MAG, and X,Y,Z ⊆ V be
pairwise disjoint subsets of variables. The set Z satisfies the adjustment criterion relative to
(X,Y) inM if

(a) no element in Z is a descendant inM of any W ∈ V \X which lies on a proper causal
path from X to Y and

(b) all proper non-causal paths inM from X to Y are blocked by Z.

Definition 4.27 (Proper back-door graph). LetM = (V,E) be a MAG, and X,Y ⊆ V be
pairwise disjoint subsets of variables. The proper back-door graph, denoted as Mpbd

XY, isproper back-door graph

obtained fromM by removing the first edge of every proper causal path from X to Y.

Definition 4.28 (Constructive back-door criterion (CBC)). LetM = (V,E) be a MAG, and
let X,Y,Z ⊆ V be pairwise disjoint subsets of variables. The set Z satisfies the constructive
back-door criterion relative to (X,Y) inM ifconstructive back-door

criterion
(a) Z ⊆ V \ Dpcp(X,Y) and

(b) Zm-separates X and Y in the proper back-door graphMpbd
XY.

With these definitions we prove:

Theorem 4.29. Given an adjustment amenable MAGM = (V,E) and three disjoint node sets
X,Y,Z ⊆ V, the following statements are equivalent:

(i) Z is an adjustment set relative to (X,Y) inM.

(ii) Z fulfills the adjustment criterion (AC) w.r.t. (X,Y) inM.

(iii) Z fulfills the constructive back-door criterion (CBC) w.r.t. (X,Y) inM.

Proof. The equivalence of (ii) and (iii) is established by observing that the proofs of Theo-
rem 4.6 generalize to m-separation. Below we establish equivalence of (i) and (ii).
¬(ii)⇒ ¬(i): If Z violates the adjustment criterion inM, it does so in the canonical DAG

C(M), and thus is not an adjustment inM.
¬(i) ⇒ ¬(ii): In the proof, we rely on properties from Lemmas 4.13, 4.21, and 4.25

presented in Subsection 4.3.2.

54

4.3. ADJUSTMENT IN MAGS

DAG G:
X

W1 W2

Y

Z

MAGM = G[∅W1
:
X

W2

Y

Z

Figure 4.3: Illustration of the case in the proof of Theorem 4.29 where Z descends from W1

which in a DAG G is on a proper causal path from X to Y , but is not a descendant of a node
on a proper causal path from X to Y in the MAGM after marginalizing W1. In such cases,
conditioning on Z will m-connect X and Y inM via a proper non-causal path.

Let G be a DAG with G[∅L= M in which Z violates the AC. We show that (a) if Z ∩
Dpcp(X,Y) 6= ∅ in G, then Z ∩ Dpcp(X,Y) 6= ∅ inM as well, or else there exists a proper
non-causal path inM that cannot be m-separated; and (b) if Z ∩ Dpcp(X,Y) = ∅ in G and Z
d-connects a proper non-causal path in G, then it m-connects a proper non-causal path inM.

(a) Suppose that in G, Z contains a node Z in Dpcp(X,Y), and let W = PCP(X,Y) ∩
An(Z). If M still contains at least one node W1 ∈ W, then W1 lies on a proper causal
path in M and Z is a descendant of W1 in M. Otherwise, M must contain a node W2 ∈
PCPG(X,Y)\An(Z) (possiblyW2 ∈ Y) such thatW2 ↔ A,X →W2, andX → A are edges
inM, where A ∈ An(Z) (possibly A = Z; see Figure 4.3). ThenM contains an m-connected
proper non-causal path X → A↔W2

∗→ Y .
(b) Suppose that in G, Z ∩ Dpcp(X,Y) = ∅, and there exists an open proper non-causal

path from X to Y. Then there must also be a proper non-causal walk wG from some X ∈ X
to some Y ∈ Y in G, on which no non-collider is in Z and all colliders are in Z. Let wM
denote the subsequence of wG formed by nodes inM. It includes all colliders on wG because
Z ∩ L = ∅. The sequence wM is a proper walk inM, but is not necessarily m-connected by
Z; all colliders on wM are in Z because every non-Z must be a parent of at least one of its
neighbors, but there might be subsequences U ∼ Z1

∗∼ Zk ∼ V on wM where all Zi ∈ Z, but
some of the Zi are not colliders on wM. However, then we can form from wM an m-connected
walk by bypassing some sequences of Z-nodes (Lemma 4.21). Let w′M be the resulting proper
walk.

If w′M is a proper non-causal walk, then there must also exist a proper non-causal path in
M (Lemma 4.13), violating the AC. It therefore remains to show that w′M is not a proper causal
walk. This must be the case if wG does not contain colliders, because then the first edge of
wM = w′M cannot be a visible directed edge out of X . Otherwise, the only way for w′M to
be proper causal is if all Z-nodes in wM have been bypassed in w′M by edges pointing away
from X. In that case, one can show by several case distinctions that the first edge X → D of
w′M, where D /∈ Z, cannot be visible (see Figure 4.4 for an example of such a case).

For simplicity, assume thatM contains a subpath A→ X → D where A is not adjacent to
D; the other cases of edge visibility like A↔ X → D (Lemma 4.10) are treated analogously.
In G, there are inducing paths (possibly several πAX from A to X and πXD from X to D w.r.t.
∅,L; πAX must have an arrowhead at X . We distinguish several cases on the shape of πXD.
(1) A path πXD has an arrowhead at X as well. Then A and D are adjacent (Lemma 4.25),
a contradiction. (2) No inducing path πXD has an arrowhead at X . Then wG must start with
an arrow out of X , and must contain a collider Z ∈ De(X) because wG is not causal. (a)
Z ∈ De(D). This contradicts Z ∩ Dpcp(X,Y) = ∅. So (b) Z /∈ De(D). Then by construction
of w′M (Lemma 4.21), wM must start with an inducing Z-trail X → Z ∼ Z1

∗∼ Zn ∼ D,

55

IDENTIFICATION VIA COVARIATE ADJUSTMENT

DAG G:

L1 Z

Y

L2

X

A

MAGM = G[∅{L1,L2}:

Z

YX

A

Figure 4.4: Case (b) in the proof of Theorem 4.29: A proper non-causal path πG = X ←
L1 → Z ← L2 → Y in a DAG is d-connected by Z, but the corresponding proper non-causal
path πM = X ← Z → Y is not m-connected in the MAG, and its m-connected subpath
π′M = X → Y is proper causal. However, this also renders the edge X → Y invisible, because
otherwise A could be m-separated from Y by U = {X,Z} inM, but not in G.

which is also an inducing path from X to D in G w.r.t. ∅,L. Then Z ∼ Z1
∗∼ Zn ∼ D must

also be an inducing path in G w.r.t. ∅,L because An(X) ⊆ An(Z). Hence, Z andD are adjacent.
We distinguish cases on the path X → Z ∼ D inM. Now we can conclude: If X → Z → D,
then Z lies on a proper causal path, contradicting Z ∩ Dpcp(X,Y) = ∅; If X → Z ↔ D, or
X → Z ← D, then we get an m-connected proper non-causal walk along Z and D.

4.3.4 The Class of the Back-Door Graph

The CBC is supposedly simpler to use than the AC because it allows one to apply existing
separation algorithms. However, our algorithms assume that the input graph is a MAG or RCG,
so it is not immediately clear if the algorithms can actually be used on proper back-door graphs.
It might be possible that removing edges from a MAG results in a graph that is not a MAG.

But this cannot happen when removing only directed edges.

Lemma 4.30 (Closure of maximality under removal of directed edges). Given a MAGM, every
graphM′ formed by removing only directed edges fromM is also a MAG.

Proof. Suppose the converse, i.e.,M is no longer a MAG after removal of some edge X → D.
Then X and D cannot be m-separated even after the edge is removed because X and D are
collider connected via a path whose nodes are all ancestors of X or D [RS02]. The last edge on
this path must be C ↔ D or C ← D; hence, C /∈ An(D), and thus we must have C ∈ An(X).
But then we get C ∈ An(D) inM via the edge X → D, a contradiction.

Corollary 4.31. For every MAGM, the proper back-door graphMpbd
XY is also a MAG.

4.4 Adjustment in RCGs

In this subsection, we propose a method to find adjustment sets in a given restricted chain graph.
Figure 4.5 shows an example of an adjustment in an RCG.

A criterion for RCGs can be given without introducing a concept like adjustment amenability,
but we need to specify the handling of undirected edges. In a path like X −− Y , the undirected
edge represents both a causal path X → Y or a non-causal path X ← Y , so we modify
Definition 4.4 to allow undirected edges in the causal paths, but do not remove them in the
proper back-door graph, because as non-causal paths they must be blocked.

56

4.4. ADJUSTMENT IN RCGS

G:
X

Z1 Z2

Z3

Y D1:
X

Z1 Z2

Z3

Y D2:
X

Z1 Z2

Z3

Y

Figure 4.5: A (restricted) chain graph G which represents two Markov equivalent DAGs: D1

and D2. Relative to exposure X and outcome Y , Z = {Z2} is an adjustment set both in D1 and
in D2. Thus, Z is an adjustment set in the chain graph.

G:

X1

X2

X3

Z1

Z2

Z3

Y GpbdXY:
X1

X2

X3

Z1

Z2

Z3

Y

D:

X1

X2

X3

Z1

Z2

Z3

Y DpbdXY:
X1

X2

X3

Z1

Z2

Z3

Y

Figure 4.6: Proper back-door graphs for a (restricted) chain graph G and a DAG D ∈ CE(G),
both with X = {X1, X2, X3},Y = {Y }.

Definition 4.32 (Proper back-door graph). Let G = (V,E) be a chain graph, and X,Y ⊆ V

be disjoint subsets of variables. The proper back-door graph, denoted as GpbdXY, is obtained proper back-door graph

from G by removing the first edge of every proper possibly causal path from X to Y that starts
with a directed edge.

This is equivalent to a new definition of PCP(X,Y):

PCP(X,Y) = {W ∈ V \X |W lies on a proper possibly causal path from X to Y}
= (pDeX(X) \X) ∩ pAnX(Y).

The back-door graph GpbdXY can still be constructed as GpbdXY = (V,E \ (X→ PCP(X,Y))).
Figure 4.6 shows the difference between the proper back-door graph of an example RCG and a
represented DAG.

Definition 4.2 then needs to be extended to handle possible descendants and almost definite
status paths:

Definition 4.33 (Constructive Back-Door Criterion for RCGs). Let G = (V,E) be a chain
graph, and let X,Y,Z ⊆ V be pairwise disjoint subsets of variables. Z satisfies the constructive
back-door criterion relative to (X,Y) in G if constructive back-door

criterion
(a) Z ⊆ V \ pDe(PCP(X,Y)) and

(b) Z blocks every almost definite status path from X to Y in the proper back-door graph GpbdXY.

To prove that this definition of a CBC characterizes adjustment sets, we need three utility
lemmas:

57

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Lemma 4.34. For every node V in a chain component C of an RCG G, the edges of C can be
oriented such that for every other node W in C there exists a directed path V +→W .

Proof. Since all nodes in the chain component have the same parents, we can start the MCS
orientation algorithm of [AMP97] at node V . It returns a sequence α1, . . . , α|C| such that
α1 = V , and if every edge αi − αj with i < j is oriented to αi → αj , the resulting graph is
acyclic without immoralities.

Assume there exists a node W to which no directed path V ∗→W exists. Let π : V +−−W
be the shortest path between V and W . The path starts with a directed edge V → since V = α1.
Because the path is not directed, there is a collider C with V ∗→ B → C ← D ∗∼ W . But this
would be an v-structure unless B and D are connected, so V ∗→ B ∼ D ∗∼ W would be a
shorter path than π, which is also open since B and D are ancestors of C.

Lemma 4.35. Let G be an RCG andD ∈ CE(G). If there exists a d-connected path π : X +∼ Y
given Z in D, there exists a d-connected given Z almost definite status path πG : X +∼ Y in G
with the following properties:

Every node V on πG is a node on π, or occurs as V ← or as V →W with W ∈ AnD(Z)
in D.

πG is not a directed path unless πD is directed or a node other than X of πG is in pAnG(Z).

Proof. Let π be the shortest d-connected path between X and Y given Z in D. If this path is
not an almost definitive status path in G the path in G contains U → V −−W or U −− V ←W .
In the first case, there has to exist an edge U →W in G due to Lemma 3.1, so we can replace
U ∼ V ∼ W by U →W to form a shorter path π′ in D. If the edge V ∼ W is V →W in D,
the node W is a collider on π′ iff it is a collider on π, and π′ is a directed path iff π′ is one. If
the edge is V ←W , V is a collider and an ancestor of Z, so W is an ancestor of Z in D and a
possible ancestor of Z in G. After the replacement, π′ is a d-connected shorter path than π.

The same can be shown in the second case, except that there π′ will have an edge U ←W
in G and thus cannot be a directed path.

None of the above two cases removes edges without adding a new edge, and that edge is
only directed from X to Y , if the three node subpath of π is a directed path or the last node
of the edge is a possible ancestor of Z. These possible ancestors are preserved during later
replacements in that sense that the last node of the newly inserted edge will also be a possible
ancestor of Z.

It remains to show that there also exists a d-connected almost definite status path with
these properties, i.e., such that all colliders are ancestors of Z in G. Let π be a path that is of
almost definite status in G and a d-connected path between X and Y given Z in D, chosen
such that it is the path with the lowest number of blocked colliders in G. Let V be the first
such collider, i.e., π contains U → V ← W in both G and D, and V is an ancestor of Z in
D and not in G. Then there exist paths U → V +→−− Z and W → V +→−− Z in G, with Z ∈ Z,
that do not contain any other node of Z. Due to Corollary 3.3, there are also d-connected paths
U +→ Z and W +→ Z in G and D. These paths intersect in a node V ′, and we can replace
U → V ←W by U +→ V ′ +←W unless the paths also intersect π in a node V ′′ /∈ {U, V,W}.
If one of them intersects the prefix π[X ∗∼ U], we can replace the prefix π[X ∗∼ W] with
π[X ∗∼ V ′′] +←W , and if they intersect the suffix π[W ∗∼ Y], we replace the suffix π[U ∗∼ Y]
with U +→ π[V ′′ ∗∼ Y], reducing the number of blocked colliders. The number of colliders
can only be reduced, because, if the number of colliders remained the same and V ′′ became

58

4.4. ADJUSTMENT IN RCGS

a collider after the replacement, V ′′ would be a possible ancestor of V and the graph would
contain a semi-directed cycle.

This is the only step introducing new nodes, and they only occur as V ← or as V → W
with W ∈ AnD(Z) in D.

To prove the correctness of the constructive back-door criterion for chain graphs, we need
to show that the criterion holds for an arbitrary RCG G if and only if it holds for every DAG
in CE(G).

Theorem 4.36. Let G be an RCG. Then the constructive back-door criterion (Definition 4.33)
holds in G for sets X,Y,Z if and only if Z is an adjustment set relative to (X,Y) in G.

Proof. If G does not contain an undirected edge, then it is a DAG and CE(G) = {G}, Defini-
tion 4.33 is equivalent to Definition 4.5, and the claim of Theorem 4.36 is equivalent to the
claim of Theorem 4.6: In the absence of undirected edges, the definition of descendants and
possible descendants are equal as well as the definition of d-connected almost definite status
paths and d-connected paths.

Otherwise, we need to show if G does not satisfy the CBC, there ∃D ∈ CE(G) that does not
satisfy the CBC; and if ∃D ∈ CE(G) that does not satisfy the CBC, G does not satisfy the CBC.

(⇒): Assume G does not satisfy CBC(a), i.e., there exist nodes Z ∈ Z,W ∈ PCPG(X,Y)
with paths X +→−− W ∗→−− Y and W ∗→−− Z. Due to Corollary 3.3, we can assume these paths

have the form ∗−− ∗→, using possibly another W . The path X +∼ W ∗∼ Z has this form, too,
unless the paths are X ∗−− +→W ∗→ Y and W +−− ∗→ Z. If the first path starts with an undirected
edge X −− W ′ ∗−− +→ W +→ Y , we can use W ′ instead of W and get a path W ′ ∗−− ∗→ Z with
Corollary 3.3.

In all cases, these paths contain only a single undirected subpath, either X ∗−− as a common
prefix or W ∗−−. According to Lemma 4.34, there exists a DAG D ∈ CE(G) in which this
subpath is oriented to a directed path X ∗→ or W ∗→, so Z is also a descendant of PCPD(X,Y)
in D and D violates CBC(a).

Assume G does not satisfy CBC(b), i.e., there exists a (proper) d-connected almost definite
status path π between X and Y in GpbdXY. Let D ∈ CE(G) be a DAG that does not violate
CBC(a). Due to Lemma 3.9, there exists a definite status path π′ between X and Y in G that has
the same directed edges, and thus exist in GpbdXY as well. Since π′ is of definite status, π′ exists in
D as d-connected path. If π′ starts with X −− in G, we can assume it starts with X ← in D, and
the first edge is not removed in DpbdXY. Otherwise, π′ starts with a directed edge in GpbdXY, and
every directed edge of GpbdXY also exists in DpbdXY: Otherwise, there would be an edge X → D

removed in DpbdXY which is not removed in GpbdXY, i.e., a node in PCPD(X,Y) that is not a node
in PCPG(X,Y), i.e., a proper path X +→W ∗→ Y in D which does not correspond to a proper
path X +→−−W ∗→−− Y in G.

Since π′ is proper, no node of X is an internal node on π′, so no removed edge occurs in π′

and the edges of π′ exists (oriented) in PCPD(X,Y).
Also every node of Z that is an descendant of a collider in GpbdXY is also a descendant of the

collider in DpbdXY, π′ is d-connected in DpbdXY, and D violates CBC(b).
(⇐): Assume there is a DAG D that does not satisfy CBC(a). Then there exist paths

X +→ W +→ Y and W ∗→ Z, which exist in G as paths X +→−− W +→−− Y and W ∗→−− Z. Thus, G
does not satisfy CBC(a).

59

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Assume there is a DAG D that does not satisfy CBC(b). Then there exists a proper d-
connected path πD in DpbdXY and D, which corresponds to a d-connected definite status path
πG in G. If any other edge of πG than the first one does not exist in GpbdXY, πD is not proper or
an directed edge X → PCPG(X,Y) was inserted in πG, which violates CBC(a) in D due to
Lemma 4.35. If πG does not start with a directed edge X → PCPG(X,Y), it also exist in GpbdXY,
and G violates CBC(b). Every open collider C in G is also an open collider in GpbdXY; otherwise,
there would be a path C ∗→ X → PCP(X,Y) ∗→ Z in G, so G would violate CBC(a).

If the path starts with an edgeX → PCPG(X,Y) and contains a collider, G violates CBC(a).
If it does not contain a collider, πD is a directed path X +→ Y or it would contain→−− and
not be of definite status, so it does not exist in DpbdXY, or πG in D is a directed path and one
node other than X has a node of Z as possible descendant due to Lemma 4.35 and G violates
CBC(b).

4.4.1 Properties of the Proper Back-Door Graph

As for MAGs, we need to know if the proper back-door graph of an RCG is still an RCG
before we can use our separation algorithms on it. Unfortunately, in this case not every proper
back-door graph GpbdXY of an RCG G is an RCG itself. However, we can show that the algorithms
are still valid with two auxiliary lemmas.

The first lemma shows that the proper back-door graph is always an RCG, if X is a
singleton {X} or there exists at least one adjustment set.

Lemma 4.37. If the proper back-door graph GpbdXY of an RCG G is not an RCG, then

1. |X| > 1, and

2. no adjustment set exists relative to (X,Y) in G.

Proof. It is easy to see that a back-door graph always satisfies the first conditions of RCGness:
It is a chain graph since removing an edge cannot introduce a cycle. All chain components are
still chordal since they are unchanged.

If an induced subgraph X → B −− P exists, an edge X → P was removed, i.e., X ∈ X
and P ∈ PCP(X,Y). So there exists a possibly directed path π from P to Y not intersecting
X in G and GpbdXY. Through the induced subgraph, there is a possibly directed path B −− π from
B to Y, so the edge X → B can only exist in the back-door graph if B ∈ X. With X and B
in X, the size of X is at least 2.

According to Corollary 3.3, all non-leading undirected edges can be removed from B −− π,
which creates a proper definite status path from X to Y. Since this path starts with an undirected
edge, it exists in the back-door graph as well and must be blocked by every adjustment set. But
it can only be blocked by nodes in PCP(X,Y), so no adjustment set exists.

This means we can always assume GpbdXY is an RCG and use all our algorithms without
testing whether GpbdXY is an RCG first. If an algorithm cannot find an adjustment set, it is always
correct and no adjustment exists. If an algorithm finds at least one adjustment set, we can test if
it is actually an adjustment set, and then all other adjustments sets found by the algorithm are
also correct.

The second lemma shows that the result of Lemma 3.10 holds in GpbdXY even if GpbdXY is not
an RCG.

60

4.5. ADJUSTMENT IN CGS

CG G :

X1

X2 V0

V1

V2

V4

V3 Y

RCGR :

X1

X2 V0

V1

V2

V4

V3 Y

RCGRpbdXY :

X1

X2 V0

V1

V2

V4

V3 Y

Figure 4.7: Finding an adjustment in an input chain graph G with X = {X1, X2}, Y = {Y }.
The RCGR is constructed from G by replacing every induced subgraph→−− with→→, and
R satisfies CE(G) = CE(R). The only chain component {V2, V3, V4} is chordal. To apply the
CBC, we identify the forbidden nodes pDe(PCP(X,Y)) = {V1, V2, V3, V4, Y }, and construct
the proper back-door graphRpbdXY. The (only) adjustment set is Z = {V0}.

Lemma 4.38. Let G = (V,E) be an RCG, and let X,Y,Z ⊆ V be pairwise disjoint subsets
of variables. In the proper back-door graph GpbdXY, the set Z blocks every almost definite status
path between X and Y if and only if Z blocks every definite status path between X and Y.

Proof. If there exists a definite status path between X and Y, it is also an almost definite status
path. On the other hand, if there exists a d-connected almost definite status path π between X
and Y in GpbdXY, π is also a d-connected almost definite status path in G, and due to Lemma 3.9,
there exists a d-connected definite status path π′ in G. Both paths have the same directed edges;
thus, π′ is also a d-connected definite status path in GpbdXY.

So we do not need to introduce a special definite status path based separation algorithm for
the proper back-door graph, but can apply algorithm TESTSEP. Although algorithm TESTSEP

was only described for RCGs, Lemma 4.38 shows that it will work on the proper back-door
graph of an RCG as well.

With the help of Lemma 4.38, the algorithms can work with almost definite status paths,
which are more convenient to handle than definite status paths because testing if a path is of
definite status requires O(nm) = O(n3) time to verify that the nodes surrounding a definite
non-collider with undirected edges on the path are not adjacent.

4.5 Adjustment in CGs

In order to reason about adjustment sets in a given chain graph G, we need to convert G
to a restricted chain graph, i.e., apply algorithm CONVERT-CG-TO-RCG. Proposition 3.39
proves the algorithm returns an RCGR with CE(G) = CE(R) in O(deg(G)2m) = O(n4) if
CE(G) 6= ∅, so G and R have exactly the same adjustment sets. If the algorithm returns no
RCG, CE(G) = ∅ and there exists no valid adjustment set at all.

Afterwards the criterion of Section 4.4 can be used to find adjustment sets inR. In the worst
case, the transformation of the CG to an RCG can increase the total running time to O(n4).

Figure 4.7 presents this process on an example graph.

4.6 The Final CBC

So far we have presented multiple CBCs for various classes, which one is actually The CBC?

61

IDENTIFICATION VIA COVARIATE ADJUSTMENT

It is the CBC for RCGs since it describes RCGs and reduces to the CBC for DAGs and
MAGs in the absence of undirected edges. Let us recall

PCP(X,Y) = {W ∈ V \X |W lies on a proper possibly causal path from X to Y}
= (pDeX(X) \X) ∩ pAnX(Y).

The back-door graph GpbdXY is constructed as GpbdXY = (V,E \ (X→ PCP(X,Y))).

Definition 4.39 (Constructive Back-Door Criterion). Let G = (V,E) be a DAG, RCG, or
adjustment amenable MAG, and let X,Y,Z ⊆ V be pairwise disjoint subsets of variables.
Z satisfies the constructive back-door criterion relative to (X,Y) in G ifconstructive back-door

criterion
(a) Z ⊆ V \ pDe(PCP(X,Y)) and

(b) Z blocks every almost definite status path from X to Y in the proper back-door graph GpbdXY.

Now we can combine Theorem 4.6, Theorem 4.29, and Theorem 4.36 together into a single
theorem:

Theorem 4.40. Let G be a DAG, RCG, or adjustment amenable MAG. Then the constructive
back-door criterion holds in G for sets X,Y,Z if and only if Z is an adjustment set relative to
(X,Y) in G.

Proof. Definition 4.39 is identical to Definition 4.33, so it holds for RCGs and DAGs which
always are RCGs. Since we only consider MAGs without undirected edges, “possible” can be
ignored for our MAGs and Definition 4.39 becomes the same as Definition 4.28.

4.7 Variations of the CBC

The CBC is surprisingly robust to modifications of its definition, so one can use slightly different
criteria to characterize adjustment sets. In Lemma 4.3, we have already seen that condition (a)
can be modified to forbid descendants after the removal of some edges. The following definition
extends the CBC by three parameters A,B,C that allow one to remove edges in condition (a)
and from the back-door graph in condition (b).

Definition 4.41 (Parametrization of the constructive back-door criterion (CBC(A,B,C))). Let
G = (V,E) be an adjustment amenable MAG or an RCG, and let X,Y,Z ⊆ V be pairwise
disjoint subsets of variables. Let A ⊆ X ∪Y, B ⊆ X, C ⊆ pDe(PCP(X,Y)). The set Z
satisfies CBC(A,B,C) relative to (X,Y) in G if

(a′) Z ⊆ V \DeAB(PCP(X,Y)), and

(b′) Z d-separates X and Y in the graph Gpbd,CXY := (V,E \ (X→ (PCP(X,Y) ∪C))).

Clearly CBC(∅, ∅, ∅) = CBC. The variants CBC(X, ∅, ∅) and CBC(∅, ∅, pDe(PCP(X,Y)))
might be the most interesting. Condition (a′) of CBC(X, ∅, ∅) forbids the descendants of
PCP(X,Y) in GX, so this condition (a′) is identical to condition (a) in Definition 4.2 for
DAGs. Condition (a′) of CBC(∅, ∅, pDe(PCP(X,Y))) forbids exactly those nodes whose
incoming edges are removed in its condition (b′), which might improve the performance in an
implementation as there is no need to calculate separate sets for condition (a′) and (b′).

62

4.8. THE ALGORITHMIC FRAMEWORK

Note that the definition excludes CBC(∅, Y, ∅), which could be considered as modifying
condition (a) to forbid the descendants of PCP(X,Y) in the graph GY. This would not lead
to a valid criterion as it would allow an adjustment set {Z} in the graph X → Y → Z, where
{Z} is not an adjustment. However, removing edges into Y as in the graph GY of CBC(Y, ∅,
∅) does not change the descendants at all, since the relevant Y are in PCP(X,Y) themselves.
We can show that none of these modifications change the criterion:

Lemma 4.42. Let G = (V,E) be an adjustment amenable MAG or an RCG, and let X,Y ⊆ V
be pairwise disjoint subsets of variables. Let A ⊆ X ∪Y, B ⊆ X, C ⊆ pDe(PCP(X,Y)).
Then CBC(A, B, C) is equivalent to the CBC.

Proof. Let Z be a set that satisfies the CBC. Since Z ⊆ V \ pDe(PCP(X,Y)) due to con-
dition (a) and we have pDeAB(PCP(X,Y)) ⊆ pDe(PCP(X,Y)), the condition (a′) of the
CBC(A, B, C), i.e., Z ⊆ V \ pDeAB(PCP(X,Y)) is satisfied for CBC(A, B, C). The set Z

separates X and Y in GpbdXY, and thus also in Gpbd,CXY because every edge or path of Gpbd,CXY also
exists in GpbdXY. Thus, (b′) is true as well. Hence, Z satisfies CBC(A, B, C).

To see the other direction, let Z be a set that satisfies CBC(A, B, C), but not CBC. If
Z does not satisfy CBC (a), there exists a node Z ∈ V \ pDeAB(PCP(X,Y)) that is not in
V \ pDe(PCP(X,Y)). Then there must exist a proper possibly causal path πXY from X to Y
on which a node W ∈ V \X is a possible ancestor of Z in G, but not in GAB, i.e., there is a
possibly causal path from a node of X over W to Z which intersects A ∪B. We can assume
the nodes were chosen such that the length of the subpath between W and Z is minimal.

Let πWY = πXY [W ∗∼ Y] = W ∗→−− Y denote the suffix of the path from X to Y starting
in W . Note that this path might consist of only the vertex W . Additionally, for the possibly
causal path from W to Z, let πWA = W +→−− A be its shortest prefix with A 6= W which ends in
A ∪B ∪X ⊆ X ∪Y. Notice, W itself cannot be in B, and if it is in A, it does not change
the paths. Then, from the condition (a′), we know that no vertex of πWA belongs to Z. If
A ∈ X, this leads to a contradiction with the condition (b′) since A +←−− W ∗→−− Y is a proper

non-causal path in Gpbd,CXY from X to Y that is not blocked by Z. Otherwise, we have A ∈ Y,
so A ∈ PCP(X,Y) and the path from A to Z is shorter than the path from W to Z, which
contradicts the choice of W .

If Z does not satisfy CBC (b), but satisfies CBC (a), there exists a path π between X

and Y not blocked in GpbdXY by Z that is blocked in Gpbd,CXY due to a removed edge X → C with
X ∈ X, C ∈ C. If X → C is on π, we can assume it is the last such edge on π. If the subpath
from C to Y is possibly causal, this edge is also removed in GpbdXY, a contradiction. So this
subpath becomes non-causal at a collider→ C ′ ← unblocked in GpbdXY, which has a descendant
in Z that is also a descendant of C contradicting CBC (a). If the removal of an edgeX → C not
on π prevents the opening of a collider, C is also the ancestor of a node in Z, which contradicts
CBC (a) as well.

4.8 The Algorithmic Framework

Using the constructive back-door criterion, we can now apply all our separation algorithms
from Chapter 3 to find, test, and enumerate arbitrary, minimal, and minimum adjustment sets.
Table 4.1 gives an overview of the relevant problems. Each of these problems is solved by an
algorithm that calculates the set PCP(X,Y), constructs the proper back-door graph in linear

63

IDENTIFICATION VIA COVARIATE ADJUSTMENT

time, and solves the corresponding separator problem restricted to R′ = R \ pDe(PCP(X,Y)).
This works because an adjustment set relative to X and Y in G corresponds to a separator
between X and Y in GpbdXY subject to the constraint given by CBC (a). On DAGs and RCGs the
resulting algorithm has a runtime that is the same as the runtime of the corresponding algorithm
for separation, on MAGs the runtime increases byO(n(n+m)) to test if the MAG is adjustment
amenable.

4.8.1 Testing Adjustment Amenability

For MAGs that are not adjustment amenable, the CBC might falsely indicate that an adjustment
set exists even though that set may not be valid for some represented graph. Fortunately,
adjustment amenability is easily tested using the graphical criteria of Lemma 4.10. For each
child D of X in PCP(X,Y), we can test the visibility of all edges X → D simultaneously
using depth-first search. This means that we can check all potentially problematic edges in time
O(n + m). If all tests pass, we are licensed to apply the CBC as shown above. Hence, we
can solve all algorithmic tasks in Table 4.1 for MAGs in the same way as for DAGs after an
O(k(n+m)) check of adjustment amenability, where k ≤ |Ch(X)| ≤ deg(G).

Let Ne(V) denote all nodes adjacent to V , and Sp(V) denote all spouses of V , i.e., nodes
W such that W ↔ V ∈ E. The adjustment amenability of a graphM w.r.t. sets X,Y can be
tested with the following algorithm:

function TESTADJUSTMENTAMENABILITY(M,X,Y)
for all D in Ch(X) ∩ PCP(X,Y) do

C := ∅
A := ∅
function CHECK(V)

if C[V] then
return A[V]

C[V] := TRUE

A[V] := ((Pa(V) ∪ Sp(V)) \ Ne(D) 6= ∅)
for all W ∈ Sp(V) ∩ Pa(D) do

if CHECK(W) then
A[V] := TRUE

return A[V]

for all X in X ∩ Pa(D) do
if ¬CHECK(X) then

return FALSE

Analysis of the Algorithm. The algorithm checks for visibility of every edge X → D by trying
to find a node Z not connected to D but connected to X via a collider path through the parents
of D, according to the conditions of Lemma 4.10; note that condition (1) of Lemma 4.10 is
identical to condition (2) with an empty collider path. Since CHECK performs a depth-first
search by checking every node only once and then continuing to its neighbors, each iteration of
the outer for-loop in the algorithm runs in linear timeO(n+m). Therefore, the entire algorithm
runs in O(k(n+m)) where k ≤ |Ch(X)|.

64

4.8. THE ALGORITHMIC FRAMEWORK

4.8.2 Testing Adjustments and Minimal Adjustments

In testing problems, we are given sets of nodes X,Y,Z in a graph G and want to know if Z
is an adjustment relative to (X,Y), i.e., if it satisfies the CBC. So to test the constraint of
condition CBC(a), we need to test if Z ∩ pDe(PCP(X,Y)) = ∅. If this is not true, Z is not
an adjustment set; otherwise, it is an adjustment set if and only if it separates X and Y in the
proper back-door graph GpbdXY.

In particular, problem TESTADJ can be solved by testing whether Z∩pDe(PCP(X,Y)) = ∅
and if Z is a separator in the proper back-door graph GpbdXY, using algorithm TESTSEP. Since
GpbdXY can be constructed from G in linear time, the total time complexity of this algorithm is
O(n+m).

Problem TESTMINADJ can be solved by testing again if Z ∩ pDe(PCP(X,Y)) = ∅ and
calling algorithm TESTMINSEP to verify that Z is minimal within the back-door graph GpbdXY.
This also leads to an optimal runtime ofO(n+m). This approach only works since the minimal
adjustment corresponds to a minimal separator in the proper back-door graph because every
subset of an adjustment satisfies condition CBC (a). It also implies the following corollary of
Lemma 3.25, which generalizes d-separation results of [TPP98] to adjustment:

Corollary 4.43. If no single node Z can be removed from an adjustment set Z such that the
resulting set Z′ = Z \ Z is no longer an adjustment set, then Z is minimal.

4.8.3 Finding Adjustments and Minimal Adjustments

For the task of finding adjustment sets, we are given sets of nodes X,Y, I,R in a graph G and
need to calculate adjustments Z relative to (X,Y) with I ⊆ Z ⊆ R.

Condition CBC(a) is realized straightforwardly by imposing the constraint Z ⊆ R′ =
R \ pDe(PCP(X,Y)), which can be given as a parameter to our separation algorithms.

Finding any adjustment set – problem FINDADJ – can be solved immediately by calling
algorithm FINDSEP on the proper back-door graph. But it is also useful to have a closed-form
solution for adjustment sets similar to Lemma 3.18 for separating sets. For a causal graph
G = (V,E) and constraints I,R, we define the set

Adjustment(X,Y) = pAn(X ∪Y ∪ I) ∩R \ (X ∪Y ∪ pDe(PCP(X,Y))).

Theorem 4.44. Let G = (V,E) be an adjustment amenable MAG or RCG, let X,Y ⊆ V be
distinct node sets, and I and R constraining node sets with I ⊆ R\(X∪Y∪pDe(PCP(X,Y))).
Then the following statements are equivalent:

(1) There exists an adjustment Z in G w.r.t. X and Y with I ⊆ Z ⊆ R.

(2) Adjustment(X,Y) is an adjustment w.r.t. X and Y.

(3) Adjustment(X,Y) separates X and Y in the proper back-door graph GpbdXY.

Proof. The implication (3)⇒ (2) follows directly from the criterion Definition 4.39 and the
definition of Adjustment(X,Y). Since the implication (2) ⇒ (1) is obvious, it remains to
prove (1)⇒ (3).

Assume there exists an adjustment set Z0 w.r.t. X and Y. From Theorem 4.40, we know
that Z0 ∩ pDe(PCP(X,Y)) = ∅ and that Z0 separates X and Y in GpbdXY. Our task is to show
that Adjustment(X,Y) separates X and Y in GpbdXY. This follows from Lemma 3.18 used for the
proper back-door graph GpbdXY if we take I′ = I, R′ = R \ (X ∪Y ∪ pDe(PCP(X,Y))).

65

IDENTIFICATION VIA COVARIATE ADJUSTMENT

G:

X1

Z1

Z2

X2

Y1

Y2

GX:

X1

Z1

Z2

X2

Y1

Y2

GpbdXY:

X1

Z1

Z2

X2

Y1

Y2

Figure 4.8: A DAG where for X = {X1, X2} and Y = {Y1, Y2}, Z = {Z1, Z2} is a valid and
minimum adjustment, but no set fulfills the back-door criterion [Pea09] (Definition 4.45), and
the parents of X are not a valid adjustment set either.

Both algorithm FINDSEP and function Adjustment(X,Y) lead to a runtime ofO(n+m) as
they only need to construct the proper back-door graph and perform elementary set operations.

The remaining problems, FINDMINADJ for weakly-minimal adjustment sets, FINDMIN-
COSTADJ, LISTADJ, and LISTMINADJ can be solved using the corresponding algorithms
for finding, resp. listing separations applied to the proper back-door graph. Since the proper
back-door graph can be constructed in linear time, the time complexities to solve the problems
above are the same in Table 3.1 and Table 4.1.

Unlike finding weakly-minimal adjustment sets finding strongly-minimal adjustments is
NP-complete, which follows from Proposition 3.31 and the fact that the graph constructed in the
proof of Proposition 3.31 contains no causal paths between X and Y , so there are no forbidden
nodes and that graph is the same as its back-door graph.

4.9 Discussion and Related Work

CBC vs. Pearl’s Back-Door Criterion in DAGs

Let us recall Definition 2.1 – Pearl’s back-door criterion (BC) for DAGs.

Definition 4.45 (Pearl’s back-door criterion (BC) [Pea93; Pea09]). A set of variables Z satisfies
the back-door criterion relative to an ordered pair of variables (X,Y) in a DAG G if:back-door criterion

(a) Z ⊆ V \ De(X), and

(b) Z blocks every path between X and Y that contains an arrow into X .

Similarly, if X and Y are two disjoint subsets of nodes in G, then Z is said to satisfy the
back-door criterion relative to (X,Y) if it satisfies the back-door criterion relative to any pair
(X,Y) such that X ∈ X and Y ∈ Y.

In Definition 4.45, condition (b) is often replaced by the equivalent condition that Z d-
separates X and Y in the back-door graph GX .

As one can see the BC has the same structure of forbidden nodes and forbidden paths as the
AC and CBC. Condition (a) of the BC is much more restrictive by forbidding all descendants
of X not only those of causal paths, so there is no need to forbid non-causal paths containing
colliders in condition (b). In [TL11], it was shown that for minimal adjustment sets in X-loop-
free DAGs the adjustment criterion and the back-door criterion of Pearl are equivalent. A DAG

66

4.9. DISCUSSION AND RELATED WORK

Statement for arbitrary DAGs and all sets Z: proof
Z satisfies CBC 6⇒ Z satisfies BC Z ← X → Y
Z satisfies CBC 6⇒ ∃Z′ satisfying BC see Figure 4.8
Z satisfies CBC and Z is minimal 6⇒ Z satisfies BC see Figure 4.8
Z satisfies CBC and Z is minimal 6⇒ ∃Z′ satisfying BC see Figure 4.8

Statement for all X-loop-free DAGs (e.g., for singleton X) and all sets Z:
Z satisfies CBC 6⇒ Z satisfies BC Z ← X → Y
Z satisfies CBC ⇒ ∃Z′ satisfies BC via minimal Z′ ⊆ Z
Z satisfies CBC and Z is minimal ⇒ Z satisfies BC see [TL11]
Z satisfies CBC and Z is minimal ⇒ ∃Z′ satisfying BC Z′ = Z

Table 4.2: A summary of the relationship between the existence of a Pearl back-door (BC)
adjustment set and the existence of an CBC-adjustment set in unconstrained DAGs and X-loop-
free DAGs. Symbol 6⇒ means that the implication does not hold, in general. On the other hand,
due to the completeness property of CBC, we have that if one replaces in the left hand sides
"CBC" by "BC" and in the right hand sides "BC" by "CBC", then the corresponding implications
are always true.

is X-loop-free for an exposure set X if no directed path between two different nodes of X X-loop-free

contains a node not in X. If X is a singleton, there are no two different nodes of X and every
DAG is X-loop-free, so the criteria are always equivalent for minimal adjustments. In this case,
it is still possible that an adjustment set Z satisfies the CBC and not the back-door criterion,
but there will always be a minimal subset Z′ ⊆ Z that satisfies the back-door criterion. Since
an adjustment set satisfying the back-door criterion also satisfies the generalized back-door
criterion of [MC15], and all sets of the generalized back-door criterion satisfy our CBC, all
three criteria are equivalent to test the existence of an (minimal) adjustment set for a singleton
X in DAGs.

The situation changes if the effect of multiple exposures is estimated. Theorem 3.2.5 in
[Pea09] claims that the expression for P (y | do(x)) is obtained by adjusting for Pa(X) if Y
is disjoint from Pa(X) in graphs without latent nodes, but, as the DAG in Figure 4.8 shows,
this is not true: the set Z = Pa(X1, X2) = {Z2} is not an adjustment set relative to {X1, X2}
and {Y1, Y2}. In this case, one can identify the causal effect by adjusting for Z = {Z1, Z2}
only. Indeed, for more than one exposure, no adjustment set may exist at all even without latent
covariates and even though Y ∩ (X ∪ Pa(X)) = ∅, e.g., in the DAG X1 X2 Z Y and
for X = {X1, X2} and Y = {Y }.

In the case of multiple exposures X, it is also harder to use the back-door criterion to actually
find an adjustment set. Although the back-door criterion reduces adjustment to d-separation in
the back-door graph GX , this is not the graph GX, so for each exposure X ∈ X the criterion
would find a separate adjustment set, which do not lead directly to a combined adjustment set
for all exposures. For an example, see Figure 4.8.

Table 4.2 summarizes some relationships between the CBC and Pearl’s back-door criterion.

67

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Adjustment in Different Classes of Graphs

[MC15] have generalized Pearl’s back-door criterion to MAGs, CPDAGs, and PAGs as the
so-called generalized backdoor criterion (GBC)2.

Definition 4.46 (Generalized Backdoor Criterion, [MC15]). Let X,Y,Z be disjoint set of
vertices in a DAG, MAG, CPDAG, or PAG. Then Z satisfies the generalized backdoor criterion
relative to (X,Y) if:

(a) Z does not contain possible descendants of X (along a definite status path); and

(b) For every X ∈ X, the set Z ∪X \X blocks every definite status path from X to Y that
does not start with a visible directed edge.

For singletons X = {X} in DAGs, the GBC is identical to Pearl’s back-door criterion. It
improves handling of multiple exposures by allowing nodes of X to block non-causal paths, e.g.,
it correctly accepts the empty set as an adjustment set in a DAG X1 ← X2 → Y . But it still
forbids descendants of X that should be allowed in adjustments, like in a DAG Z ← X → Y or
the example of Figure 4.8.

No complete criterion that accepts any valid adjustment set was known, till work on DAGs
by [SVR10]. Table 4.3 lists the relevant publications about complete criteria.

The first complete criterion for MAGs was given by us with the CBC of Definition 4.28
in [ZLT14]. It was also the first constructive complete criterion (even for DAGs) that yields a
closed-form function Adjustment(X,Y) that returns an adjustment accepted by the criterion if
and only if an adjustment exist. We have generalized it further to chain graphs, CPDAGs, and
RCGs with Definition 4.33 [ZL16b], while [Per+15; Per+16] have generalized it to CPDAGs
and PAGs in their generalized adjustment criterion (GAC).

Definition 4.47 (Generalized Adjustment Criterion, [Per+15; Per+16]). Let X,Y,Z be pairwise
disjoint node sets in a DAG, CPDAG, MAG, or PAG G. Then Z satisfies the generalized
adjustment criterion relative to (X,Y) if:

(a) Z does not contain a possible descendant of any W ∈ V \X on a proper possibly causal
path from X to Y,

(b) all proper definite status non-causal paths from X to Y are blocked by Z, and

(c) G is adjustment amenable relative to (X,Y).

For DAGs, CPDAGs, and MAGs the GAC is equivalent to our CBC despite the use of
definite status paths rather than almost definite status paths in condition (b).

As mentioned by [Per+15; Per+16] the criterion can be stated using walks rather than paths:

Definition 4.48 (GAC with walks). Let X,Y,Z be pairwise disjoint node sets in a DAG,
CPDAG, MAG, or PAG G. Then Z satisfies the generalized adjustment criterion relative to
(X,Y) if:

(a) no proper causal walk from X to Y is blocked by Z, and

2[MC15] actually writes “backdoor” while Pearl uses “back-door”. See Appendix B for a definition of PAGs.

68

4.9. DISCUSSION AND RELATED WORK

Graph class First complete criterion First complete constructive criterion
DAGs Shpitser et al. [SVR10] van der Zander et al. [ZLT14]
MAGs van der Zander et al. [ZLT14] van der Zander et al. [ZLT14]

CPDAGs Perković et al. [Per+15; Per+18] van der Zander et al. [ZL16b]
PAGs Perković et al. [Per+15; Per+18] Perković et al. [Per+16; Per+18]
CGs van der Zander et al. [ZL16b] van der Zander et al. [ZL16b]

maximal PDAGs Perković et al. [PKM17] Perković et al. [PKM17]

Table 4.3: An overview of our results and and related works for directed acyclic graphs (DAGs),
maximal ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs),
partial ancestral graphs (PAG), chain graphs (CGs), and maximally oriented partially directed
acyclic graphs (PDAGs). All works provide sound criteria, i.e., criteria only satisfied by
adjustment sets. A criterion is complete if every adjustment set satisfies it. It is constructive
if it leads to an efficient algorithm for constructing an adjustment set. PAGs and PDAGs are
described in Appendix B.

(b) all proper definite status non-causal walks from X to Y are blocked by Z, and

(c) G is adjustment amenable relative to (X,Y).

A further generalization was discovered towards maximal PDAGs [PKM17]. Unlike RCGs,
PDAGs and maximal PDAGs are allowed to contain semi-directed cycles. The maximal PDAG
can be constructed from a PDAG using four orientation rules.

Definition 4.49 (b-adjustment criterion, [PKM17]). Let X,Y,Z be pairwise disjoint node sets
in a maximal PDAG G. Then Z satisfies the b-adjustment criterion relative to (X,Y) if:

(a) Z does not contain a b-possibly descendant of any W /∈ X on a proper b-possibly causal
path from X to Y,

(b) all proper definite status b-non-causal paths from X to Y are blocked by Z, and

(c) G is adjustment amenable relative to (X,Y), i.e., all proper b-possibly causal paths from
X to Y start with a directed edge out of X.

The criterion itself is almost the same as all the other adjustment criteria, but a huge
difference occurs in the definition of b-possibly causal as the definition depends on edges that
are not on the path: A path V0, . . . , Vk is b-possibly causal if there exists no edge Vi ← Vj for
i < j in the graph. A path that is not b-possibly causal, is b-non-causal.

B-non-causal paths are difficult to search in the PDAG, so the best way to check condition (b)
of the b-adjustment criterion is to construct a DAG represented by the PDAG in O(n+m) and
then use our algorithms in the DAG [PKM17].

[HPM19] have studied the accuracy of adjustment sets in linear SEMs and given an algorithm
to improve the accuracy of a given adjustment set by pruning it, i.e., by removing unnecessary
variables. Our algorithm FINDMINSEP can be modified to perform such a pruning [ZL19] even
though the adjustment sets after the pruning are not necessarily minimal.

69

IDENTIFICATION VIA COVARIATE ADJUSTMENT

Conclusions

We have developed efficient algorithms for adjustment sets in DAGs, AGs, and RCGs, solving
the problems of Table 4.1.

Future research could examine if the algorithms can be generalized to other graphical
models, like PAGs or maximal PDAGs, while keeping the same efficient runtime.

The runtime of the algorithm to find minimum adjustment sets can probably be improved
from O(n3) to O(nm) if one obtains a faster algorithm to find minimum separators.

70

5 A Comparison of Non-Parametric
Identification Methods

In this chapter, we compare our constructive back-door criterion with Pearl’s back-door criterion
and the do-calculus empirically. For this purpose, we generate a large number of random
DAGs and then count how many adjustment sets can be identified by the CBC, the BC, or the
IDC algorithm of [SP06b; SP06a] that solves the identification problem as determined by the
do-calculus.

The experiments have shown that in many DAGs the causal effect can be identified by plain
(simple) formulas even though covariate adjustment is not possible, so it is not necessary to use
the full power of the do-calculus in these cases. We present these plain formulas in Section 5.1
before the experiments themselves. Then we include these cases in the comparison with the
other algorithms.

In Section 5.2, we describe how the random graphs are generated and analyze the results. In
the short Section 5.3, we convert the DAGs to MAGs and count how many adjustment sets are
also valid in the MAGs. In Section 5.4, we do the same after converting the DAGs to CPDAGs.

Scientific Contribution. The comparison between identification algorithms for DAGs and
AGs has been published as [ZLT19]. Here we extend it with results for CPDAGs.

5.1 Beyond Covariate Adjustment in DAGs

While our complete adjustment criterion is guaranteed to find all instances in which a causal
effect can be identified via covariate adjustment, it is well known that not all identifiable
effects are also identifiable via adjustment. The do-calculus [Pea09] is a complete method that
characterizes all identifiable causal effects in DAGs, but which comes at a price of substantially
increased formula and runtime complexity. In this section, we show that many cases in which
covariate adjustment is not applicable do not require the full power of the do-calculus either.

Specifically, we provide three propositions that permit the identification of total causal
effects in the following three cases (which are not mutually exclusive) as shown in Figure 5.1:
(1) X does not have a causal effect on Y; (2) X = X is a singleton and all its parents are
observed; (3) X and Y partition V. While in each case the adjustment criterion may or may
not be applicable, our propositions show that identifiability is always guaranteed, and the total
effect can be computed by reasonably simple formulas. Moreover, each proposition provides an
easy algorithm for testing whether the corresponding case applies.

71

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

(1) Y1 V2

V1 X1

(2) Y1 X1

V1 Y2

(3) Y1 X1

X2 Y2

Figure 5.1: The three cases analyzed in this section, Section 5.1. Exposure and outcome nodes
are marked as X and Y ; latent nodes are shown in gray. In case (1), the causal effect is given
by P (y1 | do(x1)) = P (y1), in case (2) by P (y1, y2 | do(x1)) = P (y1)P (y2 | x1, y1), and in
case (3) by P (y1, y2 | do(x1, x2)) = P (y1 | x2)P (y2 | y1, x1, x2).

5.1.1 Identification by plain formulas

One case in which identification is trivial is if there is no causal effect of X on Y at all. When
all non-causal paths between X and Y can be blocked, then this case is covered by the CBC;
however, if there is a non-causal path consisting solely of unobserved nodes, then the (void)
effect is not obtainable through the adjustment formula. In such cases, however, we simply have
P (y | do(x)) = P (y), which we will call the plain formula. The following proposition providesplain formula

a characterization of all cases in which this plain formula works in terms of d-separation.

Proposition 5.1. Let G = (V,E) be a DAG, let X,Y ⊆ V be disjoint subsets of variables,
and let R ⊆ V be an arbitrary set of observed variables, with X∪Y ⊆ R. Then X and Y are
d-separated in GX, expressed symbolically as

(Y ⊥⊥ X)GX (5.1)

if and only if the effect of intervention of X on Y is given by the plain formula P (y | do(x)) =
P (y), i.e., there is no causal effect from X on Y. Particularly, if Y ∈ An(X), then (Y ⊥⊥ X)GX ,
and thus P (y | do(x)) = P (y).

Proof. The soundness of the statement follows directly by the application of rule 3 (inter-
vention/deletion of actions in Theorem 2.2; for the precise definition of the do-calculus rules
see Theorem 3.4.1 in [Pea09]). The completeness of the statement can be shown similarly
to the completeness of the adjustment criterion [SVR10]. If Y and X are not d-separated
in GX, there exists a shortest causal path X +→ Y for X ∈ X, Y ∈ Y. In the subgraph
G′ = (V′,E′) consisting only of this path, the causal effect is given by an empty adjustment
set P (y | do(x)) = P (y | x). If we take a model P ′ where P ′(y | x) 6= P ′(y) for some values
x, y, like e.g., in a model on binary variables X , Y with

P ′(x) =
1

2
and P ′(y | x) =

{
1
3 x = y,
2
3 x 6= y,

then the causal effect is not given by P ′(y). This model can be extended to a model P on the
full graph G by assuming all other variables are independent, i.e., P (v) = (12)|V\V

′|P ′(v′).
This model is compatible with G (though not faithful, but faithfulness is not required) and we
have

P (y | do(x)) = P (y \ Y)P (y | do(x))

= P (y \ Y)P ′(y | do(x)) 6= P (y \ Y)P ′(y)

= P (y \ Y)P (y)

= P (y).

72

5.1. BEYOND COVARIATE ADJUSTMENT IN DAGS

5.1.2 Identification by generalized parent adjustment

Another case that permits the identification of causal effects using simple formulas occurs if
the exposure X = X is a singleton and all its parents are observed, i.e., Pa(X) ⊆ R. Then
adjusting for the parents of X blocks all biasing paths and suffices for identification, but one
needs to be careful as there might be variables Ypa = Pa(X) ∩Y that are both parents and
outcome nodes. Proposition 5.2 below shows that in this case the causal effect is given by
P (y | do(x)) =

∑
z P (z,ypa)P (ynp | x, z,ypa), where Ypa ∪Ynp is a partition of Y and

Ypa ∪ Z is a partition of Pa(X).
This is a slight generalization of identification via adjustment: we still sum over the values

of variables Z and multiply the conditional probability with a factor, but rather than multiplying
with the probability of the same variables P (z) that are used in the sum, we multiply with a
factor P (z,ypa) involving additionally the variables in Ypa.

The situation is even simpler if Y is also a singleton. Then one of the sets Ypa,Ynp

vanishes, so there are only two cases: either Y /∈ Pa(X) and Pa(X) is an adjustment set [Pea09,
Theorem 3.2.2], or Y ∈ Pa(X) and no adjustment exists, but the causal effect is identified
as P (y | do(x)) = P (y). One can see that in the case Y ∈ An(X) \ Pa(X) the effect of an
intervention do(X = x) can be given both by the plain expression P (y | do(x)) = P (y) and
by adjusting the parents of X .

Proposition 5.2. Let G = (V,E) be a DAG, and let X ∈ V be a node with observed parents
Pa(X) ⊆ R and Y ⊆ V \X . Furthermore, let Ypa = Y ∩ Pa(X) and let Ynp = Y \ Pa(X)
be a partition of Y = Ypa ∪ Ynp, and let Z = Pa(X) \ Ypa form with Ypa a partition of
Pa(X) = Ypa ∪ Z. Then

P (y | do(x)) =

{
P (ypa)P (ynp | x,ypa) if Z = ∅, i.e., if Pa(X) ⊆ Y,∑

z P (z,ypa)P (ynp | x, z,ypa) if Z 6= ∅,

where P (ypa) (resp. P (ynp | x,ypa) and P (ynp | x, z,ypa)) should be read as 1 if Ypa = ∅
(resp. Ynp = ∅).

Proof. This follows from a straightforward calculation using the do-calculus:

P (y | do(x)) = P (ypa,ynp | do(x))

=
∑
z

P (z,ypa,ynp | do(x))

=
∑
z

P (z,ypa | do(x))P (ynp | do(x), z,ypa)

=
∑
z

P (z,ypa)P (ynp | do(x), z,ypa)
do-calculus rule 3:
(Ypa,Z ⊥⊥ X) in GX

=
∑
z

P (z,ypa)P (ynp | x, z,ypa).
do-calculus rule 2:
(Ynp ⊥⊥ X | Z,Ypa) in GX

73

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

5.1.3 Identification when X and Y partition V

Here we consider the case of DAGs in which X and Y partition the set of variables V, which
implies that there are no unobserved nodes. Again, in this case the CBC may not be applicable
as there may be an arrow from Y to X, but still the causal effect can be given by a closed-form
solution as we present below.

Proposition 5.3. Let G = (V,E) be a DAG and X,Y ⊂ V be a partition of V = X∪Y. The
following statements hold:

(a) The causal effect of X on Y is given by

P (y | do(x)) =
∏
Y ∈Y

P (Y = y | paY),

where paY denotes the values of the parents of Y .

(b) If no edge X → Y with X ∈ X, Y ∈ Y exists, the causal effect is also given by the plain
formula

P (y | do(x)) = P (y).

(c) The causal effect can be identified by adjustment if and only if no edge Y → X with
X ∈ X, Y ∈ Y exists.

(d) If identification by adjustment is possible, the adjustment set is Z = ∅ and the causal effect
of X on Y is given by

P (y | do(x)) = P (y | x).

Proof. Statement (a) follows from the definition of the causal effect:

P (y | do(x)) =
∑
x′

P (X = x′,Y = y | do(X = x))

= P (x,y | do(x)) x 6= x′ makes the causal ef-
fect inconsistent

= P (v | do(x))

=
∏
Yj∈Y

P (yj | paj)
definition of the causal effect,
Equation 2.2

=
∏
Y ∈Y

P (Y = y | paY).

For Statements (b) and (c), note that edges X→ X or Y → Y do not affect d-connectedness
between X and Y. Hence, with the assumption in Statement (b), the sets X and Y are d-
separated in the graph GX, where all edges Y → X and X→ X are deleted. Then we know
from Proposition 5.1 that the causal effect is identified by a plain formula. Since no node is
outside of X ∪Y, the only possible adjustment set is Z = ∅, which is Statement (d). Finally,
an adjustment set Z = ∅ always satisfies the first condition of the CBC. The back-door graph is
formed by removing all edges X→ Y as those edges form a causal path of length one. Thus, Z
is an adjustment set if and only if no edge Y → X exists, which is Statement (c).

74

5.2. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN DAGS

When V = X ∪ Y, the R package causaleffect [TK17], which we used in our
experiments described in the next section, returns the formula P (y | do(x)) =

∏
Y ∈Y P (y |

an′Y), where an′Y denotes the values of the variables in An(Y) \ Y , when the package is
configured to be fast and find any identification formula rather than a short one. Thus, it is
worth to mention that

∏
Y ∈Y P (y | an′Y) =

∏
Y ∈Y P (y | paY) because the parents of a node

Y block all paths from other ancestors of Y to Y .

5.2 Empirical Analysis of Identifiability by Adjustment in DAGs

As mentioned before, not all identifiable total effects are identifiable via adjustment, but if
covariate adjustment is possible, then it is usually preferred to other methods due to its benign
statistical properties. This raises the question of how often we will actually have to go beyond
covariate adjustment when identifying causal effects. The completeness and algorithmic effi-
ciency of the CBC allowed us to perform an empirical analysis of identifiability via adjustment
in random graphs, including graphs of substantial size.

The basic setup of our experiments is as follows. We (1) generate a random graph; (2) set
nodes to be unobserved at random; (3) choose random disjoint subsets X,Y of pre-specified
cardinalities from the observed nodes; and (4) test whether P (y | do(x)) is identifiable in the
resulting graph. We test the identifiability of P (y | do(x)) using four increasingly powerful
criteria: (1) Pearl’s back-door criterion [Pea09]; (2) the CBC; (3) an extended version of the
CBC that also covers the special cases discussed in Section 5.1; and (4) the do-calculus, which
characterizes all effects that are identifiable at all. Full details are given below.

We included the classic back-door criterion (Definition 4.45) in our analysis because it is
very present in the applied literature on DAGs (e.g., [Elw13]) whereas the generalized version
(GBC, Definition 4.46) is still barely mentioned. It is known that the back-door criterion is not
complete and can thus fail to identify an adjustment set, which raises the question of how often
the back-door criterion fails to find an adjustment set when our CBC criterion succeeds. In
Section 4.9, it was shown that this is never the case for a singleton X (although the CBC may
still find more adjustment sets than the BC).

Our extensions to the CBC in Section 5.1 were motivated by our observation from prelimi-
nary experiments that many cases where an effect is not identifiable by adjustment are anyway
identifiable due to simple reasons like the absence of any causal path from X to Y, which can
be addressed quite easily without invoking the full machinery of the do-calculus.

We now proceed to give the technical details of how we set up our empirical analysis.

5.2.1 Instance Generation

We generate random DAGs with n nodes, of which 2k nodes are chosen to create sets X and Y,
each node is unobserved with a probability of approximately P (unobserved), and edges are
randomly placed with a probability l

n−1 . These four parameters form a parametrization tuple
that characterizes all DAGs of one experiment:

(n, l, k, P (unobserved)). (5.2)

More specific, we set the following parameters for the experiments. The number of vari-
ables V is one of

|V| = n ∈ {10, 25, 50, 100, 250, 500, 1000, 2000}.

75

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

These variables are divided into four sets: ordinary observed nodes R, unobserved nodes
V \R, exposure nodes X ⊆ R, and outcome nodes Y ⊆ R (with X ∩Y = ∅) depending on
parameters

P (unobserved) ∈ {0, 0.25, 0.5, 0.75} and |X| = |Y| = k ∈
{

1, 2, 5, b
√
nc, b0.1nc

}
.

To select those sets, we proceed as follows: Initially mark all variables in V as observed.
Next, for every node mark it as unobserved with probability P (unobserved) until all nodes are
considered or the number of nodes which remain observed reaches the threshold value 2k.

Finally, from the observed R pick randomly two disjoint subsets X and Y of size k. The
expected size of R is bounded by E[|R|] > n · (1 − P (unobserved)), with the difference
being very small for n � 2k, but substantial for n ' 2k. For example, for n = 10 and
k = |X| = |Y| = 5, all nodes are in R = X ∪ Y = V regardless of the probability
P (unobserved) – the case discussed already in Section 5.1.3.

The edges are chosen independently with individual probabilities P (edge) = l
n−1 , parame-

terized by l = 2, 5, 10, 20:

P (edge) ∈
{

2

n− 1
,

5

n− 1
,

10

n− 1
,

20

n− 1

}
.

For small n, the probabilities are capped at 1. For example, for n = 10 a parameter
P (edge) = min{ 10

10−1 , 1} = 1 will only generate complete graphs. Parameter l describes the
expected number of neighbors of a node in a generated DAG. This leads to an expected number
of edges in generated graphs

E[m] u n, (resp. 2.5n, 5n, 10n, depending on parameter l)

as there are n(n−1)
2 possible edges in a DAG of n nodes, each existing with probability P (edge).

In this section, we will report our results in detail only for P (unobserved) ∈ {0, 0.75}. The
remaining cases are shown in Appendix A

We have generated 10 000 graphs for each different parameter tuple using the function
GraphGenerator.randomDAG of our DAGitty library [Tex+16] in node.js. Figure 5.2
shows example instances sampled for n = 10 and illustrates the four cases we are interested in.

5.2.2 Algorithms

The main goal of our experiments was to examine the influence of the instance complexity,
like the density of a DAG, numbers of exposures and outcomes, and the ratio of unobserved
to observed variables, on the identifiability by adjustment compared to general identifiability.
Throughout, we use the following abbreviations for the algorithms we examine:

CBC: our constructive back-door criterion (Definition 4.5, Theorem 4.44). We have used our
DAGitty library, i.e., the function GraphAnalyzer.canonicalAdjustmentSet,
which implements algorithm FINDADJ based on the CBC. We have also tested another im-
plementation of our CBC criterion, the gac function of the R package pcalg [Kal+12].

CBC+: combination of CBC and plain formula (Proposition 5.1). We implement the plain for-
mula using the DAGitty function GraphAnalyzer.dConnected, which implements
algorithm TESTSEP (Proposition 3.17).

76

5.2. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN DAGS

X1

X2 V0 Y1

V1 Y2 V2

X3 V3 Y3

(a): V1 X1

V0 Y1

Y2 X2 Y3 V2

X3 V3

(c):

Y1 V1

V2 V3 X1 Y2 X2

Y3 V4 X3

(p): (n): X1 V1

V2 V3 X2

V4 Y1 Y2

X3 Y3

Figure 5.2: Example DAGs sampled for the parameter tuple n = 10, P (edge) =
2/9, P (unobserved) = 0.5, and k = |X| = |Y| = 3. Nodes are relabeled such that
exposures are called X1, X2, X3, outcomes are called Y1, Y2, Y3, and all nodes except V0
are unobserved. Case (a)djustment is identified by using the empty set and by the formula∑

v0
[P (y1|x1)P (v0|x1)P (y3|x1, y1, v0, y2)P (y2|x1, v0)] found by the ID-algorithm. Instance

(c)omplex is identified by the complex formula
∑

v0
[P (v0|x1)P (y1|x1, v0)P (y2|v0)P (y3)]

and instance (p)plain is identified by the plain formula P (y1, y2, y3) although in this case no
adjustment set exists. The final example is (n)onidentifiable.

BC: Pearl’s back-door criterion (Definition 4.45). It has been shown that if an adjustment
set Z that satisfies BC exists, it can be found by removing all descendants of X from Z
[Per+16]. This means we can implement BC by trivial post-processing of the CBC output.

IDC: general identifiability as determined by do-calculus (see Theorem 2.2). Specifically, we
use the IDC algorithm by Shpitser and Pearl [SP06a], which is well known to be com-
plete for the identification of causal effects [SP06b; HV06], meaning that the algorithm
computes a formula involving only the pre-intervention distribution that expresses the
causal effect if such a formula exists; otherwise, it outputs that identification is impossi-
ble. Our experiments are based on the IDC implementation provided by the R package
causaleffect [TK17]. Due to its high time complexity, we were only able to use this
algorithm for small instances.

5.2.3 Results

The results for all methods and parameters n, k, l described above are shown in Table 5.1 (for
the case P (unobserved) = 0) and in Table 5.2 (P (unobserved) = 0.75). We now discuss the
results in more detail.

Identification by adjustment sets or plain formulas. Tables 5.1 and 5.2 provide counts for
instances identifiable by adjustment alone (columns CBC) or by adjustment enhanced by using
the plain formula (CBC+). The number of effects only identified by the plain formula, but not
by CBC, is thus given by the difference between these columns.

Figure 5.3 summarizes the counts for CBC and CBC+ reported in Table 5.1 and 5.2 for
k = 1, 2, 5 and n ≥ 25. We omit the instances with n = 10 since for k = 5 these cases were
discussed separately in Section 5.1.3. Moreover, for parameter values l = 10 and l = 20, the
individual probabilities for edge selection, P (edge) = max{l/(n − 1), 1}, imply that every
node has 9 < l neighbors while in our analyses we want that l specifies the expected number of
neighbors of a node.

77

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

l = 2 l = 5 l = 10 l = 20
n k BC CBC CBC+ BC CBC CBC+ BC CBC CBC+ BC CBC CBC+

10 1 8893 8893 10000 7205 7205 10000 5034 5034 10000 4934 4934 10000
10 2 5543 6061 8618 1033 1980 4322 0 660 2197 0 686 2417
10 3 2359 3395 5817 57 548 1425 0 168 663 0 174 689
10 5 200 886 1712 0 108 216 0 36 71 0 31 65
25 1 9573 9573 10000 8936 8936 10000 7905 7905 10000 5843 5843 10000
25 2 8117 8247 9651 4243 4735 7003 1033 1553 3674 70 401 2118
25 3 6013 6424 8520 1203 1852 3524 46 212 1046 0 34 587
25 5 2298 3021 5055 39 243 646 0 11 93 0 1 53
50 1 9832 9832 10000 9476 9476 10000 8997 8997 10000 7832 7832 10000
50 2 9095 9128 9882 6688 6938 8388 2657 3049 4927 527 866 2729
50 5 5104 5535 7489 462 799 1613 3 16 198 0 2 58
50 7 2473 3120 4799 27 119 302 0 1 25 0 0 6

100 1 9907 9907 10000 9783 9783 10000 9494 9494 10000 8966 8966 10000
100 2 9585 9593 9971 8262 8353 9165 4600 4834 6162 1507 1762 3492
100 5 7425 7591 9090 1932 2336 3441 43 102 393 1 4 92
100 10 2499 3040 4479 15 48 137 0 0 2 0 0 0
250 1 9947 9947 10000 9894 9894 10000 9774 9774 10000 9621 9621 10000
250 2 9835 9840 9991 9284 9327 9696 6569 6689 7358 3151 3285 4502
250 5 8956 8994 9807 5051 5325 6261 469 544 994 7 17 164
250 15 3102 3537 4864 18 32 58 0 0 1 0 0 0
250 25 319 536 731 0 0 0 0 0 0 0 0 0
500 1 9977 9977 10000 9946 9946 10000 9883 9883 10000 9799 9799 10000
500 2 9923 9923 9996 9674 9684 9872 7704 7750 8116 4184 4266 4988
500 5 9477 9490 9948 7249 7368 8069 1170 1265 1686 43 48 216
500 22 3012 3288 4413 3 14 17 0 0 0 0 0 0
500 50 10 29 31 0 0 0 0 0 0 0 0 0

1000 1 9990 9990 10000 9973 9973 10000 9942 9942 10000 9885 9885 10000
1000 2 9965 9966 10000 9844 9845 9952 8416 8434 8640 5130 5173 5577
1000 5 9734 9736 9986 8679 8726 9173 2310 2396 2686 136 149 319
1000 32 2923 3191 4163 2 6 7 0 0 0 0 0 0
1000 100 0 0 0 0 0 0 0 0 0 0 0 0
2000 1 9999 9999 10000 9988 9988 10000 9972 9972 10000 9938 9938 10000
2000 2 9973 9973 10000 9940 9940 9981 9023 9029 9119 5928 5954 6156
2000 5 9880 9880 9996 9450 9471 9713 3608 3648 3869 287 300 469
2000 45 3000 3210 4122 4 8 8 0 0 2 0 0 0
2000 200 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.1: Numbers of instances for P (unobserved) = 0, i.e., all variables are observed, that
are identifiable by use of BC, CBC, or CBC+ (as defined in Section 5.2.2). Gray cells highlight
where the CBC was able to identify at least 400 more graphs than the BC. Since all variables
are observed, all instances are identifiable, thus IDC is not used in this table.

78

5.2. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN DAGS
l
=

2
l
=

5
l
=

1
0

l
=

2
0

n
k

B
C

C
B

C
C

B
C
+

ID
C

B
C

C
B

C
C

B
C
+

ID
C

B
C

C
B

C
C

B
C
+

ID
C

B
C

C
B

C
C

B
C
+

ID
C

10
1

63
33

63
33

96
04

96
09

19
35

19
35

74
75

74
76

97
8

97
8

59
44

59
44

93
6

93
6

58
77

58
77

10
2

20
08

23
39

68
89

87
40

10
3

22
8

28
54

41
37

0
11

3
17

21
22

60
0

11
4

17
52

22
94

10
3

61
0

98
0

41
93

80
56

0
21

10
61

19
95

0
9

51
2

76
3

0
10

54
7

78
9

10
5

18
5

85
9

17
56

10
00

0
0

98
19

0
10

00
0

0
43

76
10

00
0

0
26

75
10

00
0

25
1

84
14

84
14

99
23

99
30

36
47

36
47

87
27

87
42

13
40

13
40

68
84

68
88

55
7

55
7

56
96

56
96

25
2

51
64

53
31

89
39

97
31

60
1

72
8

46
30

64
17

77
13

0
25

01
34

69
4

41
18

47
22

99
25

3
23

50
26

32
69

58
92

70
73

14
4

21
41

43
27

2
17

87
2

15
18

0
6

55
4

78
0

25
5

27
7

44
9

30
08

81
57

0
1

45
6

14
62

0
0

11
4

25
1

0
0

49
71

50
1

90
82

90
82

99
75

99
79

46
51

46
51

92
37

92
53

16
99

16
99

75
47

75
55

69
7

69
7

60
31

60
32

50
2

69
85

70
59

95
99

99
08

10
98

11
89

60
78

76
86

13
3

16
0

33
53

42
70

23
40

20
61

25
43

50
5

14
40

16
63

54
52

93
94

5
16

86
8

30
30

0
1

17
8

48
2

0
0

73
12

5
50

7
25

4
38

8
25

96
86

48
0

0
18

6
12

26
0

0
19

80
0

0
3

10
10

0
1

95
27

95
27

99
92

99
93

55
85

55
85

96
02

96
18

19
85

19
85

79
80

79
91

74
4

74
4

64
14

64
16

10
0

2
82

95
83

16
98

84
99

80
18

46
18

86
73

03
86

18
19

5
21

7
37

99
49

89
49

56
24

13
29

40
10

0
5

33
91

35
62

76
36

98
04

20
30

18
00

46
90

0
0

33
1

80
2

0
0

84
15

9
10

0
10

25
2

37
5

23
64

92
63

0
0

74
95

6
0

0
3

15
0

0
0

0
25

0
1

97
91

97
91

10
00

0
10

00
0

68
32

68
32

98
14

98
27

24
93

24
93

85
64

85
79

84
6

84
6

67
93

67
95

25
0

2
92

05
92

09
99

74
99

90
30

99
31

38
85

09
93

60
27

7
28

6
49

14
60

73
46

50
28

81
34

39
25

0
5

61
10

61
82

92
69

99
62

10
6

12
3

33
44

67
64

1
1

59
9

13
23

0
0

13
6

24
8

25
0

15
23

2
30

6
22

81
96

97
0

0
16

70
3

0
0

0
4

0
0

0
0

25
0

25
3

4
22

1
90

08
0

0
0

28
0

0
0

0
0

0
0

0
50

0
1

98
82

98
82

99
99

-
76

46
76

46
99

19
-

29
35

29
35

88
85

-
94

6
94

6
71

84
-

50
0

2
95

96
95

98
99

93
-

42
67

42
80

91
17

-
40

1
40

6
57

22
-

33
34

31
66

-
50

0
5

77
74

78
01

97
54

-
27

3
28

5
49

73
-

1
1

99
0

-
0

0
22

6
-

50
0

22
15

0
18

4
17

57
-

0
0

3
-

0
0

0
-

0
0

2
-

50
0

50
0

0
4

-
0

0
0

-
0

0
0

-
0

0
0

-
10

00
1

99
36

99
36

10
00

0
-

83
94

83
94

99
70

-
31

81
31

81
91

37
-

10
61

10
61

74
22

-
10

00
2

97
89

97
90

99
99

-
54

98
55

07
95

68
-

52
5

52
6

63
61

-
51

51
35

46
-

10
00

5
87

97
88

03
99

47
-

66
6

67
6

64
82

-
2

2
14

71
-

0
0

24
5

-
10

00
32

94
10

7
15

11
-

0
0

1
-

0
0

0
-

0
0

0
-

10
00

10
0

0
0

0
-

0
0

0
-

0
0

0
-

0
0

0
-

20
00

1
99

75
99

75
10

00
0

-
89

14
89

14
99

88
-

36
85

36
85

93
61

-
10

99
10

99
76

13
-

20
00

2
98

79
98

79
99

99
-

67
74

67
77

97
91

-
71

4
71

4
70

48
-

57
57

38
58

-
20

00
5

93
83

93
84

99
80

-
15

19
15

35
79

06
-

0
0

21
59

-
0

0
34

2
-

20
00

45
81

90
13

99
-

0
0

0
-

0
0

0
-

0
0

0
-

20
00

20
0

0
0

0
-

0
0

0
-

0
0

0
-

0
0

0
-

Ta
bl

e
5.

2:
N

um
be

rs
of

in
st

an
ce

s
fo

rP
(u

no
bs

er
ve

d)
=

0.
75

th
at

ar
e

id
en

tifi
ab

le
by

us
e

of
B

C
,C

B
C

,C
B

C
+

an
d

ID
C

(a
s

de
fin

ed
in

Se
ct

io
n

5.
2.

2)
.

G
ra

y
ce

lls
hi

gh
lig

ht
w

he
re

th
e

C
B

C
w

as
ab

le
to

id
en

tif
y

at
le

as
t4

00
m

or
e

gr
ap

hs
th

an
th

e
B

C
.D

ue
to

its
hi

gh
tim

e
co

m
pl

ex
ity

,w
e

w
er

e
un

ab
le

to
ru

n
th

e
ID

C
al

go
ri

th
m

on
in

st
an

ce
s

la
be

le
d

w
ith

“-
”.

79

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

Identification by plain formula and identification by adjustment are overlapping concepts.
Some cases can be identified using either approach, while in other instances only one of them
works. Many cases for which adjustment does not work can be solved instead by the plain
formula, meaning that in those DAGs there is in fact no causal effect of X on Y. This can be
seen especially in dense graphs, e.g., DAGs in which each node has l = 20 neighbors on average,
and for singleton X and Y, i.e. k = 1. For example, for l = 20, k = 1, P (unobserved) = 0.75,
in DAGs with n = 2000 (n = 1000, n = 500) nodes, up to 65 % (63 %, 61 %) of all instances
are identifiable by the plain formula but not by adjustment. Furthermore, increasing n from 25
to 2000, we observe that this percentage ranges between 51% and the maximum 65%, a rather
narrow range. The counts for CBC and CBC+ are illustrated in Figure 5.3 as gray squares in the
columns labeled as (l, k) = (20, 1) (case: P (unobserved) = 0.75).

The difficulty of identification by adjustment grows with increasing k and l, but it decreases
with an increasing number of nodes n, both for P (unobserved) = 0 and for 0.75. In Figure 5.3,
columns are sorted increasingly by the total number of identifiable effects per column. This
shows that the most difficult case is (l, k) = (20, 5): for P (unobserved) = 0, the counts grows
very slowly with n reaching the maximum value of 3% of identifiable graphs for n = 2000; for
P (unobserved) = 0.75, almost no instances are identifiable by adjustment (compare the upper
panels in Figure 5.3). However, as we can see in Table 5.2, for n = 250, only 2.5% of cases are
identifiable at all. Figures 5.4 and 5.5 summarize the difficulty of identification stratified by n
(Figure 5.4) and l (Figure 5.5), respectively.

Comparison of CBC to the back-door criterion by Pearl. We were also interested in how
often Pearl’s back-door criterion (BC) would fail to find an adjustment set. Tables 5.1 and 5.2
show that the difference between BC and the CBC is rather small, especially for simple (or
hard) instances where nearly every (or no) DAG has an adjustment set, and as expected given
our results in Section 4.9, for singletons X = {X},Y = {Y }, the counts for BC and CBC
are indeed equal. However, for larger X,Y and parameters where only a few graphs have an
adjustment set, the difference between BC and CBC becomes more substantial. The greatest
difference occurs for n = 10, |X| = |Y| = 3, m u n, and P (unobserved) = 0, where in 10%
of all cases there is an adjustment set whereas BC finds none. This is followed by n = 10,
|X| = |Y| = 2, where BC fails to find existing adjustment sets in 7% to 9% of the cases,
depending on P (edge) and P (unobserved).

Complete identification by do-calculus compared to identification by adjustment or plain
formula. As explained above, in small graphs we have checked for general identifiability of
causal effects using the IDC algorithm [SP06a]. Results are shown for P (unobserved) = 0.75
and n ≤ 250 in Table 5.2. Since the IDC algorithm is complete for the identification problem,
the corresponding counts also show how many instances are identifiable at all. It is known that
in the case P (unobserved) = 0 the causal effect is always identifiable, so we skip the counts for
IDC in Table 5.1.

The cases with n = 10, k = |X| = |Y| = 5 (Table 5.2) might seem suspicious as the
number of identifiable graphs (i.e., counts in column IDC) increases drastically compared to the
graphs with smaller X,Y, while in all the other cases (see Table 5.2) this number decreases
with increasing cardinality of X,Y. However, this is explained by the cap on the number of
unobserved nodes. When |X| + |Y| = 10 for n = 10, there are no nodes outside of X ∪Y
remaining that could become unobserved regardless of P (unobserved), similarly to the cases in

80

5.2. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN DAGS

P (unobserved) = 0

l,
k

2
0

,5

1
0

,5

2
0

,2

5
,5

1
0

,2

2
,5

5
,2

2
0

,1

1
0

,1

2
,2

5
,1

2
,1

C
B

C
nu

m
be

ro
fn

od
es

25

50

100

250

500

1000

2000

P (unobserved) = 0.75

l,
k

2
0

,5

1
0

,5

2
0

,2

1
0

,2

5
,5

2
0

,1

1
0

,1

5
,2

2
,5

5
,1

2
,2

2
,1

Legend:

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

instance complexity

l,
k

2
0

,5

1
0

,5

2
0

,2

5
,5

1
0

,2

2
,5

5
,2

2
,2

2
,1

5
,1

1
0

,1

2
0

,1

nu
m

be
ro

fn
od

es

25

50

100

250

500

1000

2000

C
B

C
+

instance complexity

l,
k

2
0

,5

1
0

,5

2
0

,2

5
,5

1
0

,2

2
0

,1

5
,2

2
,5

1
0

,1

5
,1

2
,2

2
,1

Figure 5.3: Heatmaps visualizing the number of instances that are identifiable by our constructive
back-door criterion (CBC, top row), and by the use of CBC or the plain formula (CBC+, bottom
row). Black squares depict the worst case in which 0% of instances are identifiable by use
of CBC or CBC+, respectively. White squares mean that 100% of instances are identifiable.
The instance complexities l, k (where the expected number of neighbors of a node equals l and
|X| = |Y| = k) are sorted by total amount of identifiable instances.

Table 5.1, and all graphs must be identifiable as shown in Section 5.1.3.
Figures 5.4 and 5.5 present the data for CBC+ (the same data as in the lower right panel

of Figure 5.3) in comparison to identification by IDC. As we observed in Figure 5.3, the most
difficult case for CBC+ is (l, k) = (20, 5) and the difficulty decreases with k and l when n is
fixed (Figure 5.4). The situation is very similar for IDC. In Figure 5.5, we see that identifiability
for both CBC+ and IDC grows roughly in parallel. Similar to the results for adjustment sets,
one can see that with increasing |X|, |Y|, l the number of identifiable graphs decreases when
P (unobserved) > 0.

These experiments also provide a verification of our DAGitty implementation as every
adjustment set found by the causaleffect package has been found by DAGitty, as well as a
ground truth of the unidentifiable graphs since a causal effect not identified by the IDC algorithm
cannot be identified by any method. Moreover, as expected, for DAGs with no unobserved
variables and with |X| = |Y| = 1, all causal effects are already identified by a plain formula or
adjustment without involving the IDC algorithm (see Table 5.1).

Comparative runtimes of the algorithms. Figure 5.6 (black lines) shows the time needed
by DAGitty for these experiments on one core of a 2.1 GHz (up 3 GHz with Turbo Core)
AMD Opteron 6272 for graphs with P (unobserved) = 0.75. Graphs with a lower probability

81

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

l,
k

2
0

,5

1
0

,5

5
,5

2
,5

2
0

,2

1
0

,2

5
,2

2
,2

2
0

,1

1
0

,1

5
,1

2
,1

%
of

id
en

tifi
ed

in
st

an
ce

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n = 2000
n = 1000
n = 500
n = 250
n = 100
n = 50
n = 25

Figure 5.4: Case P (unobserved = 0.75): Percent of identifiable graphs for fixed numbers
of nodes n ∈ {25, 50, 100, 250, 500, 1000, 2000} and with varying expected number of node
neighbors l and cardinalities |X| = |Y| = k. The horizontal axis is labeled by (l, k) sorted
lexicographically. The curves show the data for CBC+, i.e., for instances identifiable by
adjustment or by plain formula.

n
,k

2
5

,5

5
0

,5

1
0
0

,5

2
5
0

,5

5
0
0

,5

1
0
0
0,

5

2
0
0
0,

5

2
5

,2

5
0

,2

1
0
0

,2

2
5
0

,2

5
0
0

,2

1
0
0
0,

2

2
0
0
0,

2

2
5

,1

5
0

,1

1
0
0

,1

2
5
0

,1

5
0
0

,1

1
0
0
0,

1

2
0
0
0,

1

%
of

id
en

tifi
ed

in
st

an
ce

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

l = 2
l = 5
l = 10
l = 20
l = 2
l = 5
l = 10
l = 20

Figure 5.5: Case P (unobserved = 0.75): Percent of identifiable graphs for fixed density
parameter values l ∈ {2, 5, 10, 20} and with varying the number of nodes n and cardinalities
|X| = |Y| = k. The horizontal axis is labeled by (n, k) sorted lexicographically. The curves
show the data for CBC+, i.e. for instances identifiable by adjustment or by a plain formula;
Crosses show data for IDC, i.e., they show how many cases are identifiable at all. The high time
complexity of the IDC algorithm precluded computations for graphs of sizes n ≥ 500.

82

5.2. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN DAGS

number of nodes
10 25 50 100 250 500 1000 2000

av
er

ag
e

tim
e

≈

0.3 ms

0.7 ms

1.6 ms

3.6 ms

8.0 ms

17.8 ms

39.6 ms

88.2 ms

196 ms

437 ms

973 ms

2.2 s

4.8 s

10.7 s

23.9 s
2.9 m

6.5 m

14.6 m

32.4 m

1.2 h

2.7 h

expected number of edges
9 17 36 73 148 303 619 1265 2584 5279 10783 22026 44994

av
er

ag
e

tim
e

≈

0.3 ms

0.7 ms

1.6 ms

3.6 ms

8.0 ms

17.8 ms

39.6 ms

88.2 ms

196 ms

437 ms

973 ms

2.2 s

4.8 s

10.7 s

23.9 s
2.9 m

6.5 m

14.6 m

32.4 m

1.2 h

2.7 h

DAGs of E[m] = 1n edges and |X| = |Y| ∈ {1, 2, 5} DAGs of E[m] = 10n edges and
|X| = |Y| ∈ {1, 2, 5}

black: DAGitty package; red: causaleffect package; purple: pcalg package;

Figure 5.6: Average time needed to find an adjustment set and verify it according to the CBC in
a single graph with P (unobserved) = 0.75, values n ∈ {10, 25, 50, 100, 250, 500, 1000, 2000},
E[m] ∈ {1n, 10n}, and various cardinalities k of X,Y. The left and the right plot show the
same data, but with a different metric on the horizontal axis: the number of nodes n (left) and the
expected number of edges m (right). In black, we show the statistics for DAGitty, in red– the
data for the R package causaleffect and in purple– the data for the gac function of the R
package pcalg R. Error bars show the minimum and maximum time taken. The plot shows that
all small graphs (n ≤ 100) are solved nearly instantaneously (time ≤ 100ms) by DAGitty.
Only graphs with a high number of edges and huge X,Y can require a few seconds. Thus
DAGitty is one to two magnitudes faster than the causaleffect package or the pcalg
package.

83

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS
l
=

2
l
=

5
l
=

1
0

l
=

2
0

n
k

C
B

C
ID

C
G

A
C

C
B

C
ID

C
G

A
C

C
B

C
ID

C
G

A
C

C
B

C
ID

C
G

A
C

10
1

0.3
m

s
35.0

m
s

13.6
m

s
0.5

m
s

53.6
m

s
49.6

m
s

0.6
m

s
60.4

m
s

303
m

s
0.6

m
s

59.9
m

s
169

m
s

10
2

0.5
m

s
70.5

m
s

17.9
m

s
0.6

m
s

100
m

s
61.9

m
s

0.8
m

s
110

m
s

173
m

s
1.0

m
s

110
m

s
211

m
s

10
3

0.5
m

s
124

m
s

14.1
m

s
0.8

m
s

182
m

s
32.5

m
s

1.1
m

s
190

m
s

121
m

s
1.1

m
s

187
m

s
60.7

m
s

10
5

0.7
m

s
242

m
s

15.3
m

s
1.0

m
s

296
m

s
52.4

m
s

1.6
m

s
306

m
s

170
m

s
1.6

m
s

305
m

s
173

m
s

25
1

0.5
m

s
27.4

m
s

72.1
m

s
0.9

m
s

46.9
m

s
1.9

s
1.6

m
s

78.7
m

s
18.5

s
2.9

m
s

89.7
m

s
1.6

h
25

2
0.7

m
s

54.9
m

s
112

m
s

1.3
m

s
121

m
s

680
m

s
2.2

m
s

193
m

s
16.4

s
4.4

m
s

206
m

s
-

25
3

0.8
m

s
70.3

m
s

113
m

s
1.5

m
s

127
m

s
695

m
s

2.6
m

s
168

m
s

15.1
s

5.7
m

s
168

m
s

39.9
m

in
25

5
1.0

m
s

132
m

s
114

m
s

1.7
m

s
276

m
s

522
m

s
3.1

m
s

309
m

s
9.5

s
7.1

m
s

305
m

s
18.9

m
in

50
1

0.8
m

s
25.9

m
s

273
m

s
1.6

m
s

51.7
m

s
-

2.8
m

s
151

m
s

-
5.4

m
s

257
m

s
-

50
2

1.1
m

s
46.9

m
s

557
m

s
2.0

m
s

157
m

s
-

3.8
m

s
475

m
s

-
7.7

m
s

691
m

s
-

50
5

1.5
m

s
142

m
s

680
m

s
2.8

m
s

414
m

s
-

5.6
m

s
796

m
s

-
14.2

m
s

937
m

s
-

50
7

1.7
m

s
224

m
s

744
m

s
3.3

m
s

649
m

s
-

6.7
m

s
1.1

s
-

17.9
m

s
1.1

s
-

100
1

1.3
m

s
24.5

m
s

978
m

s
2.5

m
s

53.1
m

s
-

4.8
m

s
366

m
s

-
9.6

m
s

914
m

s
-

100
2

1.6
m

s
32.4

m
s

1.7
s

3.0
m

s
128

m
s

-
6.1

m
s

836
m

s
-

13.6
m

s
1.8

s
-

100
5

2.0
m

s
91.3

m
s

3.1
s

4.1
m

s
440

m
s

-
9.2

m
s

1.7
s

-
25.3

m
s

2.7
s

-
100

10
2.6

m
s

248
m

s
4.1

s
5.6

m
s

843
m

s
-

13.8
m

s
2.4

s
-

47.5
m

s
3.0

s
-

250
1

2.9
m

s
25.9

m
s

6.7
s

5.1
m

s
74.1

m
s

-
10.2

m
s

966
m

s
-

22.2
m

s
5.1

s
-

250
2

3.1
m

s
28.2

m
s

9.2
s

6.0
m

s
130

m
s

-
12.9

m
s

2.6
s

-
30.6

m
s

12.0
s

-
250

5
3.7

m
s

64.6
m

s
21.9

s
7.7

m
s

499
m

s
-

19.1
m

s
6.2

s
-

56.8
m

s
20.7

s
-

250
15

5.3
m

s
462

m
s

48.5
s

13.3
m

s
2.8

s
-

38.9
m

s
19.3

s
-

144
m

s
44.1

s
-

250
25

6.4
m

s
644

m
s

1.1
m

in
17.4

m
s

3.2
s

-
57.0

m
s

12.9
s

-
252

m
s

22.9
s

-
500

1
5.2

m
s

-
-

8.7
m

s
-

-
18.1

m
s

-
-

42.1
m

s
-

-
500

2
5.5

m
s

-
-

10.1
m

s
-

-
22.7

m
s

-
-

58.1
m

s
-

-
500

5
6.2

m
s

-
-

12.3
m

s
-

-
33.8

m
s

-
-

106
m

s
-

-
500

22
9.0

m
s

-
-

24.5
m

s
-

-
89.5

m
s

-
-

391
m

s
-

-
500

50
13.4

m
s

-
-

46.3
m

s
-

-
192

m
s

-
-

886
m

s
-

-
1000

1
11.1

m
s

-
-

17.2
m

s
-

-
35.4

m
s

-
-

83.2
m

s
-

-
1000

2
11.8

m
s

-
-

19.0
m

s
-

-
42.6

m
s

-
-

114
m

s
-

-
1000

5
12.4

m
s

-
-

21.8
m

s
-

-
61.8

m
s

-
-

205
m

s
-

-
1000

32
17.1

m
s

-
-

51.3
m

s
-

-
225

m
s

-
-

1.1
s

-
-

1000
100

33.5
m

s
-

-
143

m
s

-
-

715
m

s
-

-
3.4

s
-

-
2000

1
24.6

m
s

-
-

35.1
m

s
-

-
70.8

m
s

-
-

178
m

s
-

-
2000

2
25.1

m
s

-
-

37.7
m

s
-

-
83.6

m
s

-
-

241
m

s
-

-
2000

5
26.0

m
s

-
-

41.8
m

s
-

-
120

m
s

-
-

409
m

s
-

-
2000

45
34.5

m
s

-
-

107
m

s
-

-
549

m
s

-
-

2.8
s

-
-

2000
200

92.3
m

s
-

-
505

m
s

-
-

2.7
s

-
-

13.4
s

-
-

Table
5.3:

A
verage

tim
e

to
run

D
A

G
itty

(C
B

C
),the

R
package

causaleffect(ID
C

)
or

the
g
a
c

function
of

the
R

package
p
c
a
l
g

(G
A

C
)

on
one

graph
w

ith
P

(unobserved
=

0.75).
O

m
itted

values
indicate

experim
ents

w
e

did
notrun

or
w

ere
unable

to
run

due
to

runtim
e

issues.
O

n
som

e
param

etrizations
w

e
only

ran
the

g
a
c

function
on

the
first100

graphs
ratherthan

the
fullsetof10000

graphs
due

to
tim

e
constraints.

84

5.3. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN MAGS

P (unobserved) are processed slightly faster. For small sets X and Y, the time increases
roughly linearly with the number of edges m. For larger sets, the time also increases with the
size of X,Y, which could either mean that DAGitty does not reach the optimal asymptotic
runtime of O(n+m) due to inefficient set operations, or that the time actually only depends
on O(An(X,Y)), which can be much smaller than O(m) when the sets and degrees are small.
However, for all models of a size currently used in practice, DAGitty finds the adjustment set
nearly instantaneously.

The runtimes of the causaleffect package are shown as a red plot in Figure 5.6. Since
the IDC algorithm is far more complex than the expression of Theorem 4.44, it performs
generally one to two orders of magnitude slower than the implementation in DAGitty, or
equivalently, in the same time, DAGitty can process graphs that are one to two orders of
magnitude larger. Due to this speed difference, it was not possible for us to run the IDC
algorithm experiments on the larger graphs.

We have also investigated a different implementation of the CBC in the R package pcalg
[Kal+12]. The gac function in that package implements the CBC criterion for DAGs and
other graph classes. Unlike DAGitty, the pcalg package does not find an adjustment set, but
only verifies whether a given set meets the criterion. Hence, after loading the graphs in R and
calculating the adjacency matrices required by pcalg, we compute the canonical adjustment set
Adjustment(X,Y) in R as

Dpcp = De(G, intersect(setminus(De(GNoInX, x), x), An(GNoOutX, y)))

z = setminus(An(G, union(x,y)), union(union(x,y),union(Dpcp, obs)))

with sets x, y, observed nodes obs, graphs G = G, GNoInX = GX , GNoOutX = GX and
helper functions An and De implemented using the subcomponent function of the R package
igraph. We then compare the time required by pcalg to test whether z is a valid adjustment
set to the time required by DAGitty to find and test a set. The runtimes of the gac function are
plotted in purple in Figure 5.6. They show that the gac function is several orders of magnitude
slower than DAGitty. These results are expected given that the pcalg package tests the CBC
by tracing all m-connected paths using backtracking, an approach that suffers from exponential
worst-case complexity; in fact, this backtracking algorithm is even slower than the general
implementation of the do-calculus in the causaleffect package. Only the cases with small
n are shown as the remaining computations did not terminate in a reasonable time.

5.3 Empirical Analysis of Identifiability by Adjustment in MAGs

We test for each DAG G = (V,E), generated as described in Section 5.2, whether the causal
effect in the MAGs G[∅∅ and G[∅L can be identified via adjustment. Hereby, L = V \R is the
set of unobserved nodes, which is used to determine the MAG G[∅L. Thus, all nodes of G[∅L are
considered as observed and all of them are allowed to occur in adjustment sets. The MAG G[∅∅
is syntactically equal to G and L specifies forbidden nodes for adjustments. The MAGs G[∅L can
be constructed directly according to the definition of MAGs by testing all pairs of nodes in the
DAG to determine which pair of nodes can be d-separated. However, we have implemented the
DAG-to-MAG conversion algorithm from [Zha08] in DAGitty, which is based on Theorem 4.2
in [RS02] that two nodes A,B are adjacent in G[∅L if and only if there exists an inducing path
between A and B with respect to ∅,L (see Definition 4.14), because testing if an inducing path
exists appears easier than testing if two nodes are d-separable.

Since G and G[∅∅ are syntactically equal, the only difference between using the CBC in a

85

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

DAG G and MAG G[∅∅:

V3

V2 V8 V9

V7 V6 V4 V1 Y1

X1 MAG G[∅L:

V2 V8

V7 V1 Y1

X1

Figure 5.7: Example of a DAG and resulting MAG sampled for the parameter tuple n =
10, P (edge) = 2/9, P (unobserved) = 0.75, and k = |X| = |Y| = 1. Nodes are relabeled
such that exposures are called X1 and outcomes are called Y1. The nodes L = {V3, V4, V6, V9}
are unobserved. {V1} is an adjustment set in G,G[∅∅ and G[∅L.

DAG G and the CBC in G interpreted as a MAG is that the last case needs a test for adjustment
amenability of the graph. Figure 5.7 shows an example.

The results of our experiments are shown in Table 5.4 and 5.5. As expected we find fewer
adjustment sets in the MAGs than in the DAGs since any adjustment set found in the MAG is
valid for all represented DAGs. There are also always fewer adjustment sets in G[∅L than in G[∅∅,
because with fewer nodes and edges in G[∅L, there are fewer visible edges and G[∅L might not be
adjustment amenable even if G[∅∅ is. For example, in the DAG G = L→ X → Y and the MAG
G[∅∅= L→ X → Y , the empty set is an adjustment set. However, in the MAG G[∅L= X → Y ,
there exists no valid adjustment set.

For n = 10, l = 10 (20), we have P (edge) = max{10/9, 1} = 1, so the experiments
generate only complete DAGs, such that all nodes are adjacent in the DAG and corresponding
MAGs. This implies that there is either an edge X ← Y , in which case adjustment is impossible
in both the DAG and the MAG, or there is an edge X → Y , which then would need to be
visible for adjustment in the MAG due to Lemma 4.12. However, there are no visible edges in
complete graphs since a visible edge X → Y would require a node not adjacent to Y . Thus, no
adjustment sets are found for these parameters.

The runtimes of these experiments are listed in Table 5.6. The time required to find the
adjustment set in the MAG is similar to finding it in the original DAG and quick enough to be
negligible. We did not run the experiments on larger graphs since constructing a MAG from a
DAG has quadratic runtime complexity in the worst case (as a quadratic number of edges needs
to be added), which makes constructing the MAGs too slow even with the supposedly faster
DAG-to-MAG algorithm.

5.4 Empirical Analysis of Identifiability by Adjustment in RCGs

In this section, we empirically evaluate our adjustment criterion for RCGs. In the previous
section, we have converted each DAG G generated in Section 5.2 to a MAG, so for this evaluation,
we could convert each DAG to an RCG. However, since every DAG is already an RCG, the
results would be exactly the same as those of Section 5.2. So rather than converting G to an RCG,
we convert it to a CPDAG and apply the adjustment criterion to the CPDAG. Effectively, this
means for each DAG G we search for an adjustment set that is valid for all Markov equivalent
DAGs G′ ∈ [G]. The conversion of a DAG to a CPDAG is implemented in DAGitty by converting

86

5.4. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN RCGS

n
,k

25
,5

50
,5

10
0,

5

2
50

,5
25

,2
50

,2
10

0,
2

2
50

,2
25

,1
50

,1
1
00

,1
2
5
0,

1

%
of

id
en

tifi
ed

gr
ap

hs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

n
,k

25
,5

50
,5

1
0
0
,5

2
5
0
,5

25
,2

5
0,

2

1
00

,2
2
5
0
,2

25
,1

50
,1

1
00

,1
2
50

,1

%
of

id
en

tifi
ed

gr
ap

hs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
l = 2
l = 5
l = 10
l = 20
l = 2
l = 5
l = 10
l = 20

Figure 5.8: Percent of identifiable MAGs for P (unobserved) = 0 (left) and P (unobserved) =
0.75 (right). The horizontal axis is labeled by (n, k) sorted lexicographically by the number
of nodes n and cardinalities |X| = |Y| = k. The dotted lines show the results for G[∅∅ and the
solid lines for G[∅L with various density parameter values l ∈ {2, 5, 10, 20}.

l = 2 l = 5 l = 10 l = 20

n k CBC MAG∅∅ CBC MAG∅∅ CBC MAG∅∅ CBC MAG∅∅
10 1 8893 7711 7205 4600 5034 0 4934 0
10 2 6061 3773 1980 529 660 0 686 0
10 3 3395 1243 548 32 168 0 174 0
10 5 886 64 108 0 36 0 31 0
25 1 9573 9066 8936 7731 7905 6080 5843 2168
25 2 8247 6876 4735 3300 1553 789 401 33
25 3 6424 4399 1852 913 212 61 34 0
25 5 3021 1186 243 51 11 0 1 0
50 1 9832 9582 9476 8742 8997 7869 7832 6501
50 2 9128 8305 6938 5538 3049 2301 866 549
50 5 5535 3339 799 361 16 5 2 0
50 7 3120 1234 119 21 1 0 0 0

100 1 9907 9756 9783 9249 9494 8674 8966 8126
100 2 9593 9092 8353 7216 4834 4098 1762 1476
100 5 7591 5742 2336 1416 102 59 4 1
100 10 3040 1117 48 9 0 0 0 0
250 1 9947 9898 9894 9573 9774 9176 9621 9069
250 2 9840 9613 9327 8534 6689 5942 3285 3035
250 5 8994 7954 5325 3802 544 453 17 12
250 15 3537 1360 32 6 0 0 0 0
250 25 536 50 0 0 0 0 0 0

Table 5.4: Number of instances for P (unobserved) = 0 that are identified using CBC in the
DAG or after converting the DAG to a MAG.

87

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

l = 2 l = 5 l = 10 l = 20

n k CBC MAG∅∅ MAG∅L CBC MAG∅∅ MAG∅L CBC MAG∅∅ MAG∅L CBC MAG∅∅ MAG∅L
10 1 6333 5398 5157 1935 645 543 978 0 0 936 0 0
10 2 2339 1371 1204 228 8 4 113 0 0 114 0 0
10 3 980 391 304 21 0 0 9 0 0 10 0 0
10 5 859 56 56 98 0 0 43 0 0 26 0 0
25 1 8414 7945 7838 3647 2635 2446 1340 429 346 557 18 13
25 2 5331 4309 4098 728 268 234 130 6 3 41 0 0
25 3 2632 1647 1491 144 16 14 17 0 0 6 0 0
25 5 449 149 119 1 0 0 0 0 0 0 0 0
50 1 9082 8856 8805 4651 3925 3788 1699 923 798 697 112 93
50 2 7059 6320 6177 1189 689 643 160 22 16 41 1 0
50 5 1663 906 805 16 0 0 1 0 0 0 0 0
50 7 388 130 102 0 0 0 0 0 0 0 0 0

100 1 9527 9395 9375 5585 5066 4943 1985 1311 1176 744 243 194
100 2 8316 7880 7808 1886 1462 1398 217 77 64 56 3 3
100 5 3562 2620 2501 30 11 10 0 0 0 0 0 0
100 10 375 109 84 0 0 0 0 0 0 0 0 0
250 1 9791 9743 9735 6832 6517 6462 2493 1944 1802 846 424 354
250 2 9209 9005 8980 3138 2760 2715 286 136 123 50 6 6
250 5 6182 5424 5321 123 63 57 1 0 0 0 0 0
250 15 306 98 82 0 0 0 0 0 0 0 0 0
250 25 4 1 0 0 0 0 0 0 0 0 0 0

Table 5.5: Number of instances for P (unobserved) = 0.75 that are identified using CBC in the
DAG or after converting the DAG to a MAG, either a MAG∅L with latent nodes being removed
from the graph or a MAG∅∅ with latent nodes left and marked as latent.

each directed edge that is not strongly protected to an undirected edge.
Tables 5.7 and 5.8 list our results, and Figure 5.9 plots them. Table 5.9 gives the average

runtimes.
Most instances that are identifiable in DAGs are also identifiable in CPDAGs.
For p(unobserved) = 0.75, there are always strictly more instances identifiable by adjust-

ment in CPDAGs than in MAGs, except in cases where no instance is identifiable in both
graphical models and the case of n = 250, k = 15, l = 2 where the MAG∅∅ can identify one
additional instance. For p(unobserved) = 0, the numbers are more varied. With increasing k
and l, there are also more instances identifiable in CPDAGs than in MAGs, but with increasing n,
more instances in MAGs become identifiable than in CPDAGs.

Surprisingly, the conversion of a DAG to a CPDAG is more than a hundred times faster than
the conversion to a MAG. The time to search for an adjustment is approximately the same.

88

5.4. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN RCGS

P
(u
n
o
bs
er
v
ed

)
=

0
P
(u
n
o
bs
er
v
ed

)
=

0
.7
5

l
=

2
l
=

5
l
=

1
0

l
=

2
0

l
=

2
l
=

5
l
=

1
0

l
=

2
0

n
k

M
A

G
∅ ∅

M
A

G
∅ ∅

M
A

G
∅ ∅

M
A

G
∅ ∅

M
A

G
∅ ∅

M
A

G
∅ L

M
A

G
∅ ∅

M
A

G
∅ L

M
A

G
∅ ∅

M
A

G
∅ L

M
A

G
∅ ∅

M
A

G
∅ L

10
1

0.
5,

0.
3

1.
1,

0.
5

1.
6,

0.
8

1.
7,

0.
8

0.
2,

0.
2

0.
5,

0.
4

0.
2,

0.
2

1.
1,

0.
6

0.
3,

0.
3

1.
7,

0.
9

0.
3,

0.
3

1.
7,

0.
9

10
2

0.
7,

0.
5

1.
5,

0.
9

2.
2,

1.
8

2.
4,

1.
8

0.
2,

0.
3

0.
5,

0.
5

0.
4,

0.
5

1.
1,

0.
8

0.
4,

0.
5

1.
7,

1.
6

0.
4,

0.
5

1.
7,

1.
6

10
3

0.
8,

0.
6

1.
3,

1.
1

2.
1,

2.
5

2.
4,

2.
7

0.
5,

0.
5

0.
7,

0.
6

0.
9,

1.
0

1.
4,

1.
0

0.
9,

1.
1

2.
1,

2.
4

1.
1,

1.
2

2.
4,

2.
5

10
5

0.
8,

0.
9

1.
6,

1.
7

2.
3,

4.
7

2.
4,

4.
7

0.
7,

0.
9

0.
7,

0.
8

1.
5,

1.
7

1.
4,

1.
6

2.
4,

4.
9

2.
4,

4.
9

2.
4,

4.
7

2.
4,

4.
7

25
1

3.
4,

0.
5

10
,1

.0
22

,1
.8

50
,3

.9
0.

8,
0.

3
3.

5,
0.

5
2.

0,
0.

4
9.

6,
1.

1
3.

4,
0.

6
24

,2
.0

5.
2,

0.
6

49
,4

.1
25

2
3.

7,
0.

7
10

,1
.4

22
,2

.6
49

,7
.0

0.
8,

0.
4

3.
6,

0.
7

2.
1,

0.
6

9.
8,

1.
4

3.
5,

0.
9

24
,2

.8
5.

4,
1.

1
50

,7
.4

25
3

3.
8,

0.
8

10
,1

.7
23

,3
.3

50
,1

0
1.

0,
0.

5
3.

7,
0.

9
2.

4,
0.

9
9.

6,
1.

7
3.

9,
1.

4
24

,3
.5

6.
0,

1.
6

50
,1

1
25

5
3.

7,
1.

1
10

,2
.2

22
,4

.7
49

,1
7

1.
7,

0.
8

3.
7,

1.
1

4.
5,

2.
1

9.
6,

2.
2

6.
8,

3.
9

24
,4

.5
10

,4
.9

49
,1

5
50

1
14

,0
.8

38
,1

.6
92

,3
.1

27
1,

6.
3

2.
9,

0.
3

13
,0

.9
12

,0
.7

36
,1

.8
23

,1
.2

97
,3

.3
38

,1
.6

26
7,

6.
8

50
2

13
,0

.9
38

,2
.1

91
,4

.2
26

5,
9.

4
3.

0,
0.

4
14

,1
.1

12
,0

.9
36

,2
.3

22
,1

.9
93

,4
.4

37
,2

.9
26

0,
9.

8
50

5
14

,1
.4

38
,3

.2
92

,7
.0

27
1,

19
3.

1,
0.

7
13

,1
.5

12
,2

.0
36

,3
.3

23
,5

.6
98

,7
.5

40
,8

.4
27

3,
20

50
7

13
,1

.7
35

,3
.8

95
,8

.6
26

3,
25

4.
0,

0.
9

13
,1

.8
16

,3
.5

36
,4

.0
29

,1
1

98
,9

.4
47

,1
6

27
4,

26
10

0
1

51
,1

.3
14

6,
2.

7
36

1,
5.

5
11

29
,1

2
12

,0
.4

50
,1

.5
74

,1
.4

13
8,

3.
1

16
8,

3.
1

38
0,

6.
1

29
9,

5.
1

11
58

,1
2

10
0

2
51

,1
.5

14
7,

3.
4

34
8,

7.
2

11
20

,1
7

12
,0

.5
49

,1
.8

74
,1

.7
13

8,
3.

6
16

3,
5.

1
36

6,
7.

7
29

2,
11

11
35

,1
7

10
0

5
51

,2
.1

14
7,

5.
0

34
8,

11
11

17
,3

1
11

,0
.8

49
,2

.3
75

,3
.1

13
8,

5.
1

16
3,

15
36

7,
12

29
2,

36
11

38
,3

2
10

0
10

51
,2

.9
14

7,
7.

3
35

7,
18

11
22

,5
7

12
,1

.2
50

,3
.1

76
,7

.1
13

8,
7.

6
17

1,
43

38
3,

20
29

4,
93

11
47

,5
9

25
0

1
31

4,
2.

4
89

4,
4.

5
29

67
,1

0
12

19
4,

23
64

,0
.8

30
3,

3.
1

66
3,

5.
6

91
5,

5.
6

18
29

,1
8

30
44

,1
2

33
41

,4
0

12
46

0,
25

25
0

2
31

3,
2.

6
88

9,
5.

4
29

41
,1

4
12

32
7,

33
65

,0
.9

30
8,

3.
4

63
3,

6.
1

90
7,

6.
5

17
70

,2
6

29
34

,1
5

33
15

,9
3

12
11

9,
34

25
0

5
31

2,
3.

1
88

2,
7.

8
29

44
,2

2
12

44
1,

66
65

,1
.2

30
8,

4.
0

63
7,

8.
5

90
5,

8.
7

17
75

,7
5

29
38

,2
3

33
02

,3
66

12
27

9,
63

25
0

15
31

2,
4.

9
88

9,
15

29
32

,4
9

12
04

9,
16

9
64

,2
.1

30
3,

5.
9

64
9,

25
93

5,
16

18
35

,4
12

29
75

,4
9

33
57

,1
86

0
12

55
0,

17
7

25
0

25
31

4,
6.

8
87

2,
22

29
38

,7
6

12
21

9,
27

5
65

,3
.1

31
0,

8.
0

64
0,

54
90

8,
25

17
83

,9
31

29
25

,8
0

33
97

,3
64

5
12

76
7,

29
2

Ta
bl

e
5.

6:
Ti

m
e

(i
n

m
ill

is
ec

on
ds

)t
o

fir
st

co
ns

tr
uc

tt
he

M
A

G
fr

om
th

e
D

A
G

an
d

th
en

ch
ec

k
fo

rt
he

ex
is

te
nc

e
of

an
ad

ju
st

m
en

ts
et

in
th

at
M

A
G

,f
or

P
(u

no
bs

er
ve

d)
=

0
,r

es
pe

ct
iv

el
y
P

(u
no

bs
er

ve
d)

=
0.

75
.

89

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

n
,k

25
,5

50
,5

10
0
,5

25
0,

5

50
0
,5

10
00

,5
25

,2
50

,2
10

0,
2

25
0
,2

50
0,

2

10
00

,2
25

,1
50

,1
10

0
,1

25
0,

1

50
0
,1

10
00

,1

%
of

id
en

tifi
ed

gr
ap

hs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

n
,k

25
,5

50
,5

10
0
,5

25
0
,5

50
0,

5

1
0
00

,5
25

,2
5
0,

2

10
0
,2

25
0
,2

50
0
,2

1
0
00

,2
2
5,

1

5
0,

1

10
0
,1

25
0
,1

50
0
,1

1
0
00

,1

%
of

id
en

tifi
ed

gr
ap

hs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

l = 2
l = 5
l = 10
l = 20

Figure 5.9: Percent of identifiable CPDAGs for P (unobserved) = 0 (top) and P (unobserved) =
0.75 (bottom). The horizontal axis is labeled by (n, k) sorted lexicographically by the number
of nodes n and cardinalities |X| = |Y| = k.

90

5.4. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN RCGS

l = 2 l = 5 l = 10 l = 20
n k CBC CPDAG CBC CPDAG CBC CPDAG CBC CPDAG

10 1 8893 7145 7205 4428 5034 0 4934 0
10 2 6061 3454 1980 718 660 0 686 0
10 3 3395 1378 548 158 168 0 174 0
10 5 886 251 108 54 36 0 31 0
25 1 9573 8843 8936 7496 7905 6522 5843 3833
25 2 8247 6340 4735 3081 1553 1019 401 178
25 3 6424 3898 1852 895 212 101 34 16
25 5 3021 1050 243 67 11 3 1 1
50 1 9832 9421 9476 8497 8997 8043 7832 7106
50 2 9128 7896 6938 5116 3049 2430 866 710
50 5 5535 2774 799 295 16 7 2 1
50 7 3120 996 119 28 1 0 0 0

100 1 9907 9691 9783 9076 9494 8673 8966 8406
100 2 9593 8881 8353 6713 4834 4061 1762 1577
100 5 7591 5023 2336 1142 102 67 4 1
100 10 3040 832 48 13 0 0 0 0
250 1 9947 9869 9894 9421 9774 9132 9621 9152
250 2 9840 9522 9327 8085 6689 5810 3285 3084
250 5 8994 7447 5325 3138 544 415 17 13
250 15 3537 873 32 2 0 0 0 0
250 25 536 22 0 0 0 0 0 0
500 1 9977 9937 9946 9709 9883 9297 9799 9369
500 2 9923 9731 9684 8715 7750 6844 4266 4006
500 5 9490 8555 7368 4800 1265 980 48 48
500 22 3288 679 14 0 0 0 0 0
500 50 29 0 0 0 0 0 0 0

1000 1 9990 9976 9973 9813 9942 9441 9885 9438
1000 2 9966 9871 9845 9293 8434 7447 5173 4901
1000 5 9736 9214 8726 6524 2396 1852 149 142
1000 32 3191 527 6 0 0 0 0 0
1000 100 0 0 0 0 0 0 0 0

Table 5.7: Number of instances for P (unobserved) = 0 that are identified using CBC in the
DAG or after converting the DAG to a CPDAG.

91

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

l = 2 l = 5 l = 10 l = 20
n k CBC CPDAG CBC CPDAG CBC CPDAG CBC CPDAG

10 1 6333 5644 1935 1052 978 0 936 0
10 2 2339 1701 228 69 113 0 114 0
10 3 980 583 21 7 9 0 10 0
10 5 859 241 98 46 43 0 26 0
25 1 8414 8009 3647 2979 1340 745 557 112
25 2 5331 4520 728 421 130 45 41 7
25 3 2632 1920 144 58 17 0 6 2
25 5 449 248 1 0 0 0 0 0
50 1 9082 8874 4651 4134 1699 1236 697 372
50 2 7059 6436 1189 823 160 61 41 13
50 5 1663 1113 16 6 1 0 0 0
50 7 388 192 0 0 0 0 0 0

100 1 9527 9408 5585 5185 1985 1545 744 484
100 2 8316 7923 1886 1513 217 113 56 20
100 5 3562 2762 30 17 0 0 0 0
100 10 375 160 0 0 0 0 0 0
250 1 9791 9744 6832 6560 2493 2157 846 608
250 2 9209 9022 3138 2804 286 188 50 20
250 5 6182 5467 123 73 1 0 0 0
250 15 306 132 0 0 0 0 0 0
250 25 4 0 0 0 0 0 0 0
500 1 9882 9851 7646 7476 2935 2628 946 733
500 2 9598 9489 4280 3991 406 289 34 17
500 5 7801 7319 285 209 1 0 0 0
500 22 184 76 0 0 0 0 0 0
500 50 0 0 0 0 0 0 0 0

1000 1 9936 9926 8394 8289 3181 2949 1061 857
1000 2 9790 9752 5507 5292 526 431 51 27
1000 5 8803 8513 676 564 2 1 0 0
1000 32 107 36 0 0 0 0 0 0
1000 100 0 0 0 0 0 0 0 0

Table 5.8: Number of instances for P (unobserved) = 0.75 that are identified using CBC in the
DAG or after converting the DAG to a CPDAG.

92

5.4. EMPIRICAL ANALYSIS OF IDENTIFIABILITY BY ADJUSTMENT IN RCGS

P (unobserved) = 0 P (unobserved) = 0.75
n k l = 2 l = 5 l = 10 l = 20 l = 2 l = 5 l = 10 l = 20

10 1 0.1, 0.4 0.3, 0.5 1.3, 0.9 1.3, 0.9 0.1, 0.4 0.3, 0.5 1.3, 1.0 1.3, 0.9
10 2 0.1, 0.5 0.4, 0.8 1.4, 1.3 1.4, 1.3 0.1, 0.5 0.3, 0.6 1.3, 1.0 1.3, 1.0
10 3 0.1, 0.6 0.4, 0.9 1.3, 1.0 1.4, 1.3 0.1, 0.6 0.4, 0.9 1.3, 1.1 1.3, 1.1
10 5 0.2, 0.7 0.4, 1.1 1.4, 1.3 1.4, 1.3 0.1, 0.7 0.4, 1.1 1.5, 1.2 1.4, 1.2
25 1 0.3, 0.5 0.8, 0.9 1.7, 1.5 9.9, 2.7 0.3, 0.6 0.8, 1.0 1.8, 1.6 10, 2.8
25 2 0.3, 0.8 0.8, 1.4 1.9, 2.3 10, 4.4 0.3, 0.7 0.8, 1.3 1.9, 2.1 10, 3.9
25 3 0.3, 0.9 0.8, 1.6 1.9, 2.7 11, 5.7 0.4, 0.9 0.9, 1.6 2.0, 2.7 11, 5.9
25 5 0.3, 1.1 0.8, 1.9 1.9, 3.5 10, 8.0 0.4, 1.2 0.8, 1.9 2.0, 3.3 10, 7.5
50 1 0.6, 0.8 1.6, 1.6 3.4, 2.9 9.6, 5.6 0.7, 0.9 1.6, 1.8 3.5, 3.1 9.6, 5.9
50 2 0.6, 1.0 1.6, 2.1 3.4, 3.9 9.6, 8.0 0.7, 1.1 1.6, 2.2 3.5, 4.0 9.9, 8.2
50 5 0.6, 1.6 1.6, 3.0 3.5, 5.9 9.6, 14 0.7, 1.6 1.7, 3.1 3.6, 5.9 9.8, 15
50 7 0.6, 1.8 1.6, 3.4 3.4, 6.8 9.6, 18 0.7, 1.8 1.7, 3.5 3.6, 7.2 9.7, 19

100 1 1.2, 1.3 3.1, 2.7 6.8, 5.2 18, 11 1.3, 1.5 3.2, 3.0 7.0, 5.6 18, 11
100 2 1.2, 1.5 3.1, 3.4 6.8, 6.8 18, 15 1.4, 1.8 3.2, 3.6 7.0, 7.0 18, 15
100 5 1.2, 2.2 3.2, 4.8 6.8, 10 18, 26 1.4, 2.4 3.2, 4.8 7.0, 10 18, 27
100 10 1.3, 3.0 3.2, 6.4 6.9, 15 18, 45 1.4, 3.1 3.3, 6.5 7.0, 15 18, 48
250 1 2.2, 2.2 6.8, 4.9 15, 10.0 38, 22 2.5, 2.7 6.2, 5.3 13, 10 36, 22
250 2 2.3, 2.6 6.0, 5.5 13, 13 35, 30 2.6, 3.1 6.2, 6.4 14, 13 33, 30
250 5 2.3, 3.3 6.0, 8.0 13, 20 35, 57 2.7, 3.9 6.3, 8.6 14, 19 35, 56
250 15 2.4, 5.3 6.0, 13 13, 41 36, 147 2.6, 5.7 6.2, 13 14, 31 37, 150
250 25 2.4, 6.8 6.1, 18 13, 62 36, 238 2.7, 7.5 6.3, 20 14, 59 36, 238
500 1 5.2, 4.7 14, 8.5 30, 19 75, 43 5.0, 5.4 12, 9.5 27, 20 77, 46
500 2 4.5, 4.5 11, 9.1 27, 23 74, 61 5.0, 5.9 12, 11 28, 26 75, 63
500 5 4.5, 5.4 12, 13 28, 36 73, 110 5.1, 6.8 12, 14 28, 37 74, 113
500 22 4.5, 9.2 11, 26 28, 98 71, 406 5.1, 11 12, 28 28, 100 74, 415
500 50 4.6, 15 12, 50 29, 207 71, 928 5.3, 17 13, 53 30, 219 74, 928

1000 1 8.9, 7.9 28, 15 59, 33 161, 85 10, 12 29, 20 62, 41 157, 89
1000 2 9.1, 8.4 25, 17 57, 44 158, 119 10, 12 26, 22 59, 50 154, 118
1000 5 9.2, 9.4 25, 22 57, 67 159, 214 10, 13 26, 26 59, 72 154, 208
1000 32 9.2, 16 26, 59 57, 238 158, 1065 11, 20 26, 62 59, 250 155, 1058
1000 100 9.5, 36 27, 163 57, 751 156, 3373 11, 41 27, 170 58, 763 152, 3403

Table 5.9: Time (in milliseconds) to first construct the CPDAG from the DAG and then check
for the existence of an adjustment set in that CPDAG, for P (unobserved) = 0, respectively
P (unobserved) = 0.75.

93

A COMPARISON OF NON-PARAMETRIC IDENTIFICATION METHODS

count of nodes
0 10 20 30 40 50 60 70 80 90 100

co
un

to
fg

ra
ph

s

100

10143

10286

10429

10571

10714

10857

101000

101143

101286

101429 labeled DAGs
unlabeled DAGs
lower bound of
unlabeled DAGs

count of nodes
0 100 200 300 400 500 600 700 800 900 1000

100

1016667

1033333

1050000

1066667

1083333

10100000

10116667

10133333

10150000

10166667 labeled DAGs
unlabeled DAGs
lower bound of
unlabeled DAGs

Figure 5.10: Count of different labeled and unlabeled DAGs against the count of nodes n. The
left side shows n ≤ 100, the right side n ≤ 1000. These counts are sequences A003024 and
A003087 in [Oei]. When counting unlabeled DAGs, one counts DAGs that are isometric to each
other only once. For example, for n = 2, there exists three labeled DAGs: V1 → V2, V1 ← V2,
and V1 V2 without an edge. Since the first two DAGs can be obtained from each other by
changing the names of the nodes, there only exist two unlabeled DAGs.
The count of labeled DAGs is an upper bound of the count of unlabeled DAGs. Since we have
not been able to calculate the count of unlabeled DAGs of more than 31 nodes, we calculate
a lower bound by dividing the count of labeled DAGs by the factorial of the number of nodes.
The factorial of the number of nodes is the count of the permutations of all nodes, that is, the
maximal count of possible labelings. Not all of those permutations yield distinct graphs, e.g.,
there is only one graph with zero edges for any number of nodes. The right side of the figure
shows that the lower and upper bound are very close.

5.5 Discussion

In summary, our experimental results show that many causal effects in random DAGs cannot be
identified by covariate adjustment. Nevertheless, many of these cases are easily addressed by
extending the CBC slightly, and then most effects become identifiable without having to resort
to the do-calculus. In MAGs and CPDAGs, there are fewer effects identifiable by adjustment
than in DAGs.

We have sampled 10 000 graphs for each parameter tuple, which is a large amount of data,
but only a tiny fraction of the total count of DAGs as shown in Figure 5.10. We hope that typical
graphs are more likely to be sampled and the results are representative anyway.

It might be worthwhile to repeat the experiments on graphs used in actual epidemiological
or economical studies. However, such data is not readily available, which would make it hard to
collect enough graphs for quantitative results. Real studies usually involve rather small graphs,
possibly to a lack of efficient algorithms for larger graphs. Our algorithms and DAGitty might
help future researchers to study larger models.

94

6 Identification via Instrumental
Variables in SEMs

In the previous chapters, we have considered non-parametric models in which a node Y with a
single parent X in a causal graph X → Y represents nothing more than a factor P (y|x) in the
factorization of any probability distribution compatible with the graph and P (y|x) can be an
arbitrary probability distribution function.

In this chapter, we study linear Structural Equation Models (SEMs) in which each random
variable is a normally distributed real number and the edges encode linear relationships between
the variables. This allows one to not only obtain qualitative information about separation and
independence between the random variables, but also precise quantitative information about their
correlations from the graphical model. For this reason, SEMs in the form of linear regression
models are frequently used in social sciences and economics to analyze causal and statistical
relations between random variables whose interactions are assumed to be linear [Bol89; Dun75].

Our goal is again to identify the causal effect of variables X on Y. Of course, the general
results of the previous chapters are valid for SEMs, so we already know how to use adjustment
sets to calculate the total causal effect in SEMs. Moreover, the additional assumption of linear
relationships allows one to identify causal effects in SEMs that cannot be identified in non-
parametric models. Unfortunately, no efficient, sound, and complete graphical criterion is known
for the identification problem in SEMs, so we investigate sound, non-complete criteria, which
provide a way to calculate the causal effect if the criterion is satisfied.

For example, the above DAG X → Y represents two random variables X and Y with
linear equations X = εX and Y = λX + εY . This equation means a unit change of the single
parent X will change the mean of Y by λ, so λ is the direct causal effect of X on Y . λ is also direct causal effect

called path coefficient or parameter, and a common notation is to write the coefficient between path coefficient
parametervariables as a parameter above the edge between them, e.g., X λ→ Y .

εX and εY are error terms, which themselves are (Gaussian) random variables. Thus, the error terms

value of Y is not exactly λX and the model is not deterministic. The error terms are independent
of all other (observed) variables of the model but might be correlated with the error terms of
other variables. The equation is a causal equation, so although a change of X changes the
left-hand-side Y , changing Y by an intervention will not change X . Rather an intervention
on Y would remove all incoming edges to Y , severing the relationship to the parents of Y and
removing them from the equation.

The mean of Y in this case is E[Y] = E[λX + εY] = λE[X] + E[εY], and the covariance
between X and Y is Cov(X,Y) = Cov(X,λX + εY) = λCov(X,X), because the mean
and covariance are linear functions and the error term εY is assumed to be independent of all
other observed variables. Hence, λ = Cov(X,Y)

Cov(X,X) and we can calculate the coefficient λ from
the observed data. Here observed data means precisely the covariances between all pairs of

95

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

variables. Thus, λ is identifiable, and identified by the equation λ = Cov(X,Y)
Cov(X,X) .identifiable

identified In this case, the identification is trivial because there is no confounding between X and Y ,
i.e., there is no d-connected path between X and Y not involving the edge X → Y .

G1

Z X

U

Y
β γ

ω 1
ω
2

G2

Z

W

X

U

Y

µ1

µ2

β γ

ω 1
ω
2

Figure 6.1: G1: The classic IV model. G2: Z is not an IV, but is a conditional instrument
given W . U and W are unobserved variables.

If there is confounding between X and Y which cannot be removed by conditioning, like
in the SEMs of Figure 6.1, the standard identification approach is to use another variable that
is not confounded with Y as an instrumental variable (IV or instrument). For example, in G1instrumental variable

IV
instrument

the covariances between the observed variables are Cov(X,Y) = γ + ω1ω2, Cov(Y,Z) = βγ,
and Cov(X,Z) = β. We cannot calculate γ from Cov(X,Y) due to the confounder U and the
unknown parameters ω1 and ω2, but we can calculate γ = Cov(Y,Z)

Cov(X,Z) . So, Z is the instrumental
variable of this example.

If the instrumental variable is also confounded with Y , we can block the paths between it
and Y by conditioning. For instance, Z in G2 is confounded with Y , but by conditioning on W
we can identify the direct causal effect γ as γ = Cov(Y,Z|W)

Cov(X,Z|W) . In such cases, Z is a conditional
instrumental variable (conditional instrument) [Pea01], and we say that W instrumentalizes Z.conditional instrument

instrumentalizes The idea of applying instruments together with conditioning variables predates its graphical
definition. Take the seminal work of Angrist on the labor market impact of voluntary military
service [Ang98; AP08, Chapter 4]: During the “Vietnam draft lottery”, randomly chosen men
were called to serve in the war. As not every drafted person enlisted, this is a classical example
of a randomized trial with imperfect compliance: The IV Z, in this case, is the draft, and the
independent variable X is enlistment. Several dependent variables Y could be studied with this
setup, e.g., the average earnings loss due to enlistment. However, because different numbers of
men were drafted for each birth cohort, the IV was only exogenous conditioned on the year of
birth (this would be our W for the conditional instrumental variable). A DAG describing this
scenario could look like this:

enlistment Y

Uyear of birth

draft

We will investigate the problems of testing, finding, and enumerating (conditional) IVs, the
same problems we have investigated for adjustment sets.

Testing a conditional IV, i.e., deciding whether a given variable is a conditional IV, presents
the difficulty of searching for the set W, which is surprisingly hard. We will prove that it is, in
fact, an NP-complete problem. However, if the set W is a subset of the ancestors, the test can
be performed in linear time. This implies a new definition of IVs, which we term ancestral IVs.
It turns out that an ancestral IV exists if and only if a conditional IV exists in a graph. We use
this definition to obtain efficient algorithms to find conditional IVs in O(n(n+m)) time.

A different kind of instrumental variables, so called instruments relative to the total effect,
has been proposed by Pearl [Pea09]. We investigate the algorithmics of these IVs in the same

96

6.1. PRELIMINARIES

way and compare them to conditional IVs. We show that the testing of IVs relative to the total
effect remains NP-complete when all variables in the model are observed. On the other hand,
conditional IVs can be tested, found, and even enumerated in linear time in fully observed
models.

Later we study instrumental sets, which combine multiple IVs to identify causal effects that
cannot be identified by just one IV [Bri04; Bri10; BP02]. Each IV in the instrumental set is
more general than a classic IV, but less general than a conditional IV.

The next Section 6.1 formally introduces SEMs and basic definitions. Section 6.2 gives
criteria to decide whether a variable Z is an instrumental variable, both classical and novel
criteria. In Section 6.3, we implement these criteria as efficient algorithms or show that some
criteria are NP-complete. Section 6.4 and Section 6.5 investigate instrumental sets in the same
way, i.e., Section 6.4 gives the criteria for instrumental sets and Section 6.5 the algorithms as
well as an NP-completeness proof.

Scientific Contribution. We have given the first efficient algorithms and complexity results
for conditional IVs [ZTL15] and instrumental sets [ZL16a]. The results have also been presented
at [ZTL19]. Our runtime improvements for minimal separator algorithms [ZL19] have also
improved the runtime of the algorithms for instrumental variables.

6.1 Preliminaries

Mixed graphs, Semi-Markovian models

The causal graph of a SEM is usually a semi-Markovian graph G = (V,E) with directed and
bidirected edges. We only consider graphs in which the subgraph of all directed edges is acyclic.
Bidirected edges are, however, allowed between any pair of nodes without restriction. The
directed edges encode linear relations between observed variables and the bidirected edges
represent unobserved confounders as correlations between the error terms. When we label the
random variables as V1, . . . , Vn, the linear equations of the model are: linear equation model

Vj =
∑
i 6=j

λjiVi + εj , j = 1, . . . , n, (6.1)

where parameter λji is the direct causal effect of variable Vi on variable Vj . If there is no edge direct causal effect

from Vi to Vj in G the parameter λji is zero. When V1, . . . , Vn are ordered topologically, we
have λji = 0 for all i ≥ j.

The error terms are assumed to be normally distributed. The correlation Cov(εi, εj) between error terms

two error terms εi and εj is represented by the coefficient ωi,j of a bidirected edge Vi ↔ Vj . If
there is no edge Vi ↔ Vj , we have Cov(εi, εj) = ωi,j = 0. A pair of correlated error terms
Cov(εi, εj) 6= 0 represents an unknown confounder influencing variables Vi and Vj .

The variables themselves are all considered as observed in a semi-Markovian SEM, so
the observed data consists of the mean E[Vi] and covariance Cov(Vi, Vj) of all variables. For mean

covariancesimplicity, we will assume all variables are normalized to E[Vi] = 0 and Cov(Vi, Vi) = 1. After
this normalization, the correlation coefficient ρVi,Vj =

Cov(Vi,Vj)√
Cov(Vi,Vi)Cov(Vj ,Vj)

and the regression

coefficient rVi,Vj =
Cov(Vi,Vj)
Cov(Vj ,Vj)

are all identical to the covariance, i.e., Cov(Vi, Vj) = ρVi,Vj =

rVi,Vj . Hence, we can use the terms correlation and covariance as synonyms.

97

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Graph G is syntactically an ancestral graph with the same d-separation rules, so all separation
algorithms of Chapter 3 can be applied to it. If variables Vi and Vj are separated, their covariance
Cov(Vi, Vj) is zero.

Covariance matrix and algebraic interpretation

SEMs can be represented algebraically by adjacency matrices of polynomials. The mixed graph
is equivalent to two adjacency matrices: The matrix Λ = (λij)ij contains all the coefficients of
all directed edges and the matrix Ω = (ωij)ij the coefficients of all bidirected edges. An entry
of these matrices is zero if the edge is absent, and a monomial if the edge is present.

When the covariances between every pair of variables are written as a matrix Σ = (σij)ij =
(Cov(Vi, Vj))ij , the covariances can be calculated as [Bol89]covariance matrix

Σ = (I − Λ)−1Ω(I − Λ)−T , (6.2)

where I is the identity matrix. The inverse in the equation can be calculated because, for an
acyclic graph, Λ is a triangle matrix. The entries of Σ are rational functions, that is, fractions
with polynomial nominator and denominator.

This equation fully encodes all statistical knowledge about a SEM. When~ε = (εV1 , . . . , εVn)T

is a vector of (Gaussian) random variables normally distributed with covariance matrix Ω and the
parameters Λ are arbitrary, then ~V = (V1, . . . , Vn)T is a vector of random variables normally
distributed with covariance matrix Σ. This follows because the value of the variables V is
determined by the error terms as ~V = (I − Λ)−1~ε.

Equation 6.2 is a rational equation system in the variables λij , ωij , and σij . A direct causal
effect λij is now identifiable if and only if we can solve this equation system for λij by finding
an expression equal to λij that only contains variables σij .

One can solve this equation system with standard algebraic methods using a computer
algebra system (CAS). This provides a sound and complete method to identify any direct causal
effect that is identifiable. However, the standard polynomial equation solving algorithms, usually
Gröbner bases, have double exponential runtimes and are often too slow to solve the equation
system. Gröbner bases have been used for surveys of all graphs with up to four nodes [GPSS10]
and five nodes [FDD12]. [GPSS10] notes the runtime varies between seconds and 75 days for
graphs with four nodes.

We only search for generic solutions that hold for almost all matrices of covariances resp.generic solutions

probability distributions. For example, for the model G1 of Figure 6.1, the causal effect γ is
identified by γ = Cov(Y, Z)/Cov(X,Z) although Cov(X,Z) might be 0 in some probability
distributions compatible to the model. The usual formal definition of generic solutions is that
the subset of parameters for which the solution is invalid must have a Lebesgue measure of zero.
In the example, there are four parameters, (β, γ, λ1, λ2) ∈ R4. The solution is invalid only for
Cov(X,Z) = β = 0, so the set of parameters with an invalid solution is {(0, γ, λ1, λ2)}, which
is an algebraic set isometric to R3, and a three-dimensional subset of a four-dimensional space
has measure 0. Every proper algebraic subset has measure zero, and it is likely that the set of
not identifiable parameters is always an algebraic set [FDD12].

Wright’s Path Analysis

SEMs provide an easy way to calculate the covariances between two variables X and Y via
Wright’s path analysis [Wri34]. Every active path between X and Y contributes the product of

98

6.2. SINGLE INSTRUMENTAL VARIABLES

all its edge coefficients to the covariance. That is when we write the product of the coefficients of
all edges on a path π as

∏
c:π c and the sum over all active paths between X and Y as

∑
π:X ∗∼Y ,

the covariance is:
Cov(X,Y) =

∑
π:X ∗∼Y

∏
c:π

c

The covariances calculated using Wright’s path analysis are of course the same covariances
we have in the entries of the matrix Σ of Equation 6.2. Wright’s path analysis might be easier to
understand than the matrix inversion and matrix product, but an algorithm that enumerates all
active paths or walks will require exponential time. The summation over paths is only valid if all
variables are normalized to have unit variance. In models with unnormalized variables, one has
to sum over walks and include the variance of the fork (or highest node) of each walk as a factor.

SEMs as DAGs

In the remainder of this chapter, we will assume a SEM is given as a DAG G = (O ⊆ V,E)
with observed and unobserved variables rather than as a mixed graph with bidirected edges. To
apply our results for graphs with bidirected edges, every bidirected edge Vi ↔ Vj needs to be
replaced with Vi ← Uij → Vj where Uij is a new, unique, unobserved node. We will still draw
bidirected edges in some exemplary figures.

6.2 Single Instrumental Variables

In this section, we give the formal definitions of instrumental variables, which can identify the
causal effect of one variable X on one child variable Y . Table 6.1 presents a summary of the
different definitions.

Definition Correlation Independence Restriction on W
6.1 Instrument (Z ⊥6⊥X)G (Z ⊥⊥ Y)Gc
6.2 Conditional instrument (Z ⊥6⊥X |W)G (Z ⊥⊥ Y |W)Gc W ⊆ O \ De(Y)
6.4 Ancestral instrument (Z ⊥6⊥X |W)G (Z ⊥⊥ Y |W)Gc W ⊆ (O \ De(Y)) ∩ An(Y, Z)
6.8 Active instrument active path in Gc (Z ⊥⊥ Y |W)Gc W ⊆ O \ De(Y)

Relative to the total effect:
6.3 Instrument r.t.t.t.e. (Z ⊥6⊥X |W)G (Z ⊥⊥ Y |W)GX W ⊆ O

6.5 Ancestral instrument r.t.t.t.e. (Z ⊥6⊥X |W)G (Z ⊥⊥ Y |W)GX W ⊆ O ∩ An(Y, Z)

6.9 Active instrument r.t.t.t.e. active path in G (Z ⊥⊥ Y |W)GX W ⊆ O

Table 6.1: Overview about the different concepts of instrumental variables in Definition 6.1 to
Definition 6.9. The correlation conditions are expressed as a graphical criterion. “Active path”
means there should exists one path Z +∼ X in the graph that is neither blocked by ∅ nor by W.

Subsection 6.2.1 and Subsection 6.2.2 define the instruments and conditional instruments
that we have already discussed in the introduction, Subsection 6.2.3 instruments relative to
the total effect. Subsection 6.2.4 and Subsection 6.2.5 introduce a new kind of instrumental
variables, which are a special case of conditional IVs and which we will use to develop efficient
IV algorithms.

99

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

6.2.1 Instrumental Variables

The classic definition of IVs is:

Definition 6.1 (Instrumental variable). Z is an instrumental variable relative to X → Y ifinstrumental variable

(a) Z is d-connected to X , and

(b) Z is d-separated from Y in Gc = G \ (X → Y).

Graph Gc is a commonly used notation for the DAG G without the edge X → Y , whichgraph Gc
is motivated by the notation for SEMs in which the direct causal effect between two random
variables is written above the arrow like X c→ Y .

Condition (a) is generically equivalent to “Z correlates with X”, so condition (a) can
be tested statistically in the observed data itself without knowledge of the graphical model.
Condition (b) on the other hand is statistically untestable from observed data, arguably, it cannot
even be expressed in statistical language [Pea09].

If Z is an IV relative to X → Y , the causal effect c is identified as c = Cov(Y,Z)
Cov(X,Z) .identified

6.2.2 Conditional Instruments

A conditional IV generalizes instrumental variables by conditioning on a set W:

Definition 6.2 (Conditional Instrument [Pea01]). Z is a conditional instrument relative toconditional instrument

X → Y if there exists a set W ⊆ O such that

(a) Z is d-connected to X given W,

(b) W d-separates Z and Y in Gc = G \ (X → Y), and

(c) W consists of non-descendants of Y .

When W and Z satisfy these conditions, we say that W instrumentalizes Z.instrumentalizes

For instance, Z is a conditional instrument in G2 of Figure 6.1 using W = W . Again,
condition (a) is statistically testable, and it implies the existence of a path π from Z to X that is
d-connected by W. Conditions (a) and (b) are direct generalizations of the same conditions in
the standard IV definition. Restriction (c) is necessary because adjustment for descendants of Y
would bias estimation by the reversal paradox.

If Z is a conditional IV relative to X → Y , the causal effect c is identified asidentified

c =
Cov(Y,Z |W)

Cov(X,Z |W)
.

6.2.3 Instruments Relative to the Total Effect

Pearl has introduced a new kind of instrumental variables which he calls instruments relative to
the total effect [GP98; Pea09, Section 7.4]. His definition replaces (Z ⊥⊥ Y)Gc by (Z ⊥⊥ Y)GX
and allows descendants of Y in W. Thus, he obtains:

Definition 6.3 (Instrument Relative to the Total Effect [Pea09]). A variable Z is an instrument
relative to the total effect of X on Y if there exists a set of measurements W such thatinstrument relative to the

total effect

100

6.2. SINGLE INSTRUMENTAL VARIABLES

(a) (Z ⊥6⊥X |W)G , and

(b) (Z ⊥⊥ Y |W)GX .

Pearl mentions this definition in the context of generalizing instrumental variables to non-
linear systems. However, he does not explain how instruments relative to the total effect can be
used to actually calculate a causal effect. We are also not aware of any scientific work using
instruments relative to the total effect. Pearl cites [GP98] as the source of this definition, but
that paper does not give further information, besides a different formulation of condition (a) as
“every path connecting Z and Y must pass through X unless it contains arrows pointing head-
to-head”. It is possible that his definition is erroneous and cannot be used to calculate causal
effects practically. Nevertheless, we will analyze instruments relative to the total effect together
with normal conditional instruments since the comparison between them reveals interesting
facts about the complexity of instrumental variables.

6.2.4 Ancestral Instruments

When one wants to use conditional IVs, it is difficult to choose the set W. In fact, we will
show in Section 6.3.4 that it is an NP-complete problem to find W. In order to obtain efficient
algorithms, we need a new kind of IVs whose W is easier to find. Thus, we give a less general
definition of conditional IVs which requires that W consists only of ancestors of Y or Z.

Definition 6.4 (Ancestral Instrument). Variable Z is an ancestral instrument relative to X → Y ancestral instrument

if there exists a set W ⊆ O such that

(a) Z is d-connected to X given W,

(b) W d-separates Z and Y in Gc = G \ (X → Y), and

(c) W consists of ancestors of Y or Z or both which are non-descendants of Y .

We can restrict Definition 6.3 similarly:

Definition 6.5 (Ancestral Instrument Relative to the Total Effect). A variable Z is an ancestral
instrument relative to the total effect of X on Y if there exists a set of measurements W such ancestral instrument

relative to the total effectthat

(a) (Z ⊥6⊥X |W)G ,

(b) (Z ⊥⊥ Y |W)GX , and

(c) W ⊆ An(Y, Z).

From this definition, it is obvious that ancestral IVs are a special case of conditional IVs.
Also, each standard IV is an ancestral IV (using W = ∅).

There exist conditional instruments relative to X → Y which do not satisfy the conditions
of an ancestral conditional instrument; for instance, Z in this DAG with W = {W}:

Z W X Y

This might seem to imply that ancestral IVs are less “powerful” than generic conditional
ones. Importantly and perhaps surprisingly, the following theorem shows that this is not the
case. Every causal effect that can be identified with a conditional IV can be identified with an
ancestral IV.

101

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Theorem 6.6. For a given DAG G and variables X and Y , a conditional IV Z relative to
X → Y exists if and only if an ancestral IV Z ′ relative to X → Y exists.

Theorem 6.7. For a given DAG G and variables X and Y , an instrumental variable Z relative
to the total effect of X on Y exists if and only if an ancestral instrumental variable Z ′ relative
to the total effect of X on Y exists.

The combined proof of Theorem 6.6 and Theorem 6.7:

Proof. Let G⊥6⊥ = G⊥⊥ = Gc,O′ = O\De(Y) for the proof of Theorem 6.6 and G⊥6⊥ = G,G⊥⊥ =
GX ,O′ = O for the proof of Theorem 6.7.

Let Z be a conditional IV relative to X → Y (resp. the total effect of X on Y), π a path
from X to Z in G⊥6⊥, and W ⊆ O′ the set opening π and d-separating Y and Z in G⊥⊥. Assume
Z, π,W are chosen such that π has a minimum number of colliders and W has minimum size
(i.e., any other path would have at least as many colliders, and if there is a path with the same
number of colliders, it is opened by a set at least as large as W).

Then no node W can be removed from W without opening a path between Z and Y in G⊥⊥
or blocking path π. In the former case, W lies on a path opened by W \W and we know from
Lemma 3.13 that W ∈ An(Y ∪ Z ∪ (W \W)).

In the latter case, there is a collider on π only opened by W . Let C be the closest opened
collider to X , possibly C = W . The walk π[X ∗∼ C] ∗→W is active given W \W in G⊥6⊥, and
due to Lemma 3.11, there is a corresponding path between X and W that has fewer colliders
than π. This means there exists a path τ between Y and W that is active given W \W in G⊥⊥
because otherwise W would be a conditional IV relative to X → Y , contradicting that π has a
minimum number of colliders.

Now we show that τ ends with ← W , because otherwise the walk τ ∗← π[C ∗∼ Z] =
Y ∗∼→ W ∗← π[C ∗∼ Z] would be active given W in G⊥⊥ and Z would not be a conditional
instrument. Clearly, π[C ∗∼ Z] is active in G⊥6⊥ given W and cannot contain an edge adjacent to
X and removed in G⊥⊥ (here we discuss the case G⊥⊥ = GX as it is trivial for G⊥6⊥ = G⊥⊥), since it
is a subpath of π starting at X , so if it is not also active in G⊥⊥, there is a collider C ′ on π that is
only opened by a descendant of X . Then there is an active path C ′ +→ X , and X +← π[C ′ ∗∼ Z]
has fewer colliders than π, which contradicts our choice of π. For the same reason, the path
W ∗← C does not contain X and is active given W \W .

So, if W is not an ancestor of Y , τ contains a collider (as a descendant of W) that has a
descendant in W \W . Then every node in W is either an ancestor of Y or Z, or is an ancestor
of some other node in W. Since DAGs do not contain cycles, every node in W is an ancestor
of Y or Z. Thus, Z is an ancestral instrument.

The other direction is trivial.

The result that we lose nothing by restricting ourselves to ancestral IVs reminds one of
Theorem 4.44 that if a causal effect can be identified by any adjustment, then it can also be
identified by adjusting only for ancestors of the variables of interest. Also for finding minimal
and minimum separators between variables in Section 3.3, it was sufficient to only consider
their ancestors.

Section 6.3 will show that ancestral instruments are algorithmically appealing: unlike non-
ancestral instruments, they and their conditioning set W can be found efficiently in a given
DAG.

102

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

6.2.5 Active Instruments

We have also studied another restriction of conditional instruments – the active instruments:

Definition 6.8 (Active Conditional Instrument). Variable Z is an active conditional instrument active conditional
instrumentrelative to X → Y if there exist a set W and a path π from Z to X such that

(a) W does not block the path π in Gc = G \ (X → Y),

(b) W d-separates Z from Y in Gc and W consists of non-descendants of Y , and

(c) path π is active in Gc given ∅.

Obviously, every active conditional instrument is a conditional instrument. An active
conditional instrument is also an ancestral instrument since W remains a separator when we
remove all nodes outside An(Y,Z) from W due to Lemma 3.18 and removing nodes will not
block path π, which has no colliders.

Active instruments are not of much interest on their own, however, we will later see that
they have an interesting relation to instrumental sets (see Subsection 6.4.4).

One can also define an active version of instruments relative to the total effect:

Definition 6.9 (Active Instrument Relative to the Total Effect). Variable Z is an active condi-
tional instrument relative to the total effect of X on Y if there exist a set W and a path π from active conditional

instrumentZ to X such that

(a) W does not block the path π in G,

(b) (Z ⊥⊥ Y |W)GX , and

(c) path π is active in G given ∅.

This is also an ancestral instrument relative to the total effect although we are not aware
of any purpose of this definition. Since it allows descendants of Y in W, there is no relation
to instrumental sets. These descendants are also the reason why there exist active (ancestral)
instruments relative to the total effect that are not active (ancestral) instruments. For example
in the DAG U X Y W Z with W = {W} and π = Z ← U → X , Z is an
instrument of the former kind, but not of the latter kind.

6.3 Algorithmics of Instrumental Variables

In this section, we will analyze the following problems, given a DAG G and variables X and Y :

Testing Given a variable Z, can we find a set W ⊆ O that renders Z into an IV?

Finding Can we find a variable Z and a set W ⊆ O that renders Z into an IV?

Enumerating Can we find a maximum set of variables Z such that, for each Z ∈ Z, there
exists a set W ⊆ O that renders Z into an IV?

103

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Graph with unobserved nodes, O (V

Definition Testing Finding Enumerating
6.1 Instrument O(n+m) O(n+m) O(n+m)
6.2 Conditional instrument NP-complete O(n(n+m)) NP-complete
6.4 Ancestral instrument O(n+m) O(n(n+m)) O(n(n+m))
6.3 Instrument (Total effect) NP-complete O(n(n+m)) NP-complete
6.5 Ancestral instrument (Total effect) O(n+m) O(n(n+m)) O(n(n+m))

Fully observed DAG with O = V, or partially observed DAG with Pa(Y) ⊆ O:

Definition Testing Finding Enumerating
6.1 Instrument O(n+m) O(n+m) O(n+m)
6.2 Conditional instrument O(n+m) O(n+m) O(n+m)
6.4 Ancestral instrument O(n+m) O(n+m) O(n+m)
6.3 Instrument (Total effect) NP-complete O(n(n+m)) NP-complete
6.5 Ancestral instrument (Total effect) O(n+m) O(n(n+m)) O(n(n+m))

Table 6.2: Algorithmic complexity of finding or testing instrumental variables. Testing means,
given X , Y , and Z, find one set W; finding means, given X and Y , find one pair Z and W;
enumerating means, given X and Y , find all possible Z, each Z with its own W.

G1 :

Y

V1

V2 V3 Z

G2 :

Y

V1

U V2 Z

G3 :
V1U1

ZV2V3V4Y

V5U2

Figure 6.2: Three DAGs with unobserved variables {U,U1, U2}. The nearest separators relative
to (Y, Z) are {V2} and {V1, V2} in G1, {V1, V2} in G2, and {V1, V4} in G3.

Each problem is defined separately for each definition of IV, i.e., IV in the list above can
mean a conditional IV relative to X → Y , an IV relative to the total effect of X on Y , an
ancestral conditional IV, or an ancestral IV relative to the total effect.

Table 6.2 summarizes our results.

To solve one of these problems, it is necessary to find a set W d-separating Y and Z as
well as a path π between X and Z, such that W does not block π. If we know W, it is not
hard to find π, and if we know π, it is not hard to find W, as d-separating paths and sets are
well-understood. However, finding both together can be hard.

We will thus start by introducing the concept of nearest separators, separators that do not
block any unnecessary paths, i.e., they only block paths that must be blocked by every separator.
Then we know a nearest separator does not block π, since any other separator will also block π.
Yet nearest separators do not depend on π and can be found without knowing π.

104

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

6.3.1 Nearest Separators

A separator relative to (Y, Z) needs to block every path π′ between Y and Z at a non-collider
on that path π′. The intuitive idea of a nearest separator is to choose non-colliders that are close
to Y . So Y is surrounded by a set of nodes W, and any path that reaches one of those nodes W
will reach Y unless it is blocked at W . Since those nodes of W are so close to Y , any path that
is not blocked by every separator can move around W without intersecting W.

Definition 6.10. Given nodes Y and Z in V, a set W ⊆ O \ {Y,Z} is a nearest separator nearest separator

relative to (Y,Z) iff

(i) W d-separates Y and Z,

(ii) for any W ∈W and any set W′ ⊆ O \ {W,Y,Z}, it holds:

if W′ does not d-separate W and Z, then W′ does not d-separate Y and Z.

A nearest separator is not necessarily a minimal separator and a minimal separator is not
necessarily a nearest separator. For example, the sets {V2} and {V1, V2} in graph G1 in Figure 6.2
are (the only) nearest separators, whereas {V2} and {V3} are (the only) minimal separators. A
nearest separator can include V1 because a path π from V1 to Z can always be extended to a
path Y ← π from Y to Z. A nearest separator does not need to include V1, since such a path π
to V1 is already blocked at V2. A nearest separator cannot include V3, because any path from V3
to Y can be blocked at V2.

A more complex example is the graph G2 in Figure 6.2 with an unobserved node U /∈ O,
where the only nearest separator is {V1, V2}. V2 needs to be included since the path Y ← U →
V2 cannot be blocked at an unobserved node, and V1 needs to be included because the inclusion
of V2 opens V2 as a collider. Similarly, in G3 the nearest separator is {V1, V4} because the path
through node U1 needs to be blocked at V1. V5 must not be included in the nearest separator,
since it is not on an active path Y and Z, although it is reachable from both sides. The only
minimum separator in G3 is {V2}, which shows minimum and nearest separators are entirely
unrelated concepts.

Nearest separators help to find instrumental variables because we know that a nearest
separator relative to (Y, Z) will not block a path between X and Z unnecessarily, regardless of
which node is X .

Theorem 6.11. Let W be a nearest separator relative to (Y,Z). Then, for every X ∈ V and
every set W′ ⊆ O \ {X,Y, Z} with (Z ⊥⊥ Y |W′)G that opens a path π between X and Z,
the set W ∪W′ has the following properties:

1. W ∪W′ opens the path π,

2. X /∈W ⊆W ∪W′, and

3. (Z ⊥⊥ Y |W ∪W′)G .

Proof. Let X be a node in V, and let π be a path connecting X and Z such that π is open given
a set W′ ⊆ O with (Z ⊥⊥ Y |W′)G .

If π is not open given W ∪W′, there is a non-collider on π in W. Let W ∈W \W′ be
the non-collider closest to Z on π. Then π[W ∗∼ Z] is not blocked by W′, so W′ would not
d-separate Y and Z.

105

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

If X ∈W ∪W′, we have X ∈W, and W′ would not d-separate Y and Z since it does
not d-separate X and Z.

If W ∪W′ would not d-separate Y and Z, there is a path π′ between Y and Z that is open
given W ∪W′, but not given W or W′. Then no non-collider is in W ∪W′, so neither W
nor W′ opens all colliders or π′ would be open given W or W′. Let C be the collider on π′

that is closest to Z, opened by W and not opened by W′. Every collider closer to Z is either
opened by both or only by W′, so π′[C ∗∼ Z] is active given W′. Since C is opened by W,
it has a descendant W ∈W and the path C ∗→W is open given W′. So W ∗← π′[C ∗∼ Z] is
open given W′, and W′ would not d-separate Y and Z.

If the node X is Z in the above theorem, π is a path of length 0 and W′ can be any separator
between Y and Z. The node X cannot be Y , because then there is no W′ that separates Y and
Z while still leaving an open path between X and Z.

An informal and intuitive interpretation of the theorem is: If a nearest separator W blocks a
path between an X and Z (at a non-collider), every other separator between Y and Z blocks
that path, too. This is because the nodes of a nearest separator are the nearest to Y , so all other
separators have nodes that are nearer to Z, and thus stand in the way of paths trying to reach Z.
Hence, if W blocks all paths between an X and Z, X cannot be an instrumental variable.

The theorem is very technically and states properties of W ∪W′, because the path π can
start at any node and contain colliders that cannot be opened by W alone, because almost any
node with two parents can be one of those colliders. To use a nearest separator, one needs to
find a set W′ which might still be hard, so we would prefer to have a statement about properties
of W itself, a statement like W does not block π. This is not true due to the arbitrary colliders,
but if we restrict the colliders to be ancestors of Y and Z, we can show that if there is a path π
not blocked by W′, there is a path π′ not blocked by W:

Corollary 6.12. Given nodes Y and Z in V, and a nearest separator W relative to (Y, Z), for
every X ∈ V for which there is a set W′ ⊆ O ∩ An(Y,Z) \ {X,Y, Z} with (Z ⊥⊥ Y |W′)G
and (Z ⊥6⊥X |W′)G , the set W does not d-separate X and Z.

Proof. Let π be a path connecting X and Z given W′. Assume W d-separates X and Z, i.e.,
W does not open π. From Theorem 6.11, we know W ∪W′ opens π, so every non-collider on
π is not in W, so there is a collider that is not opened by W.

All colliders opened by W′ are ancestors of Y or Z, so, for every unopened collider C,
there is a path C +→ Y or C +→ Z not blocked by W. If every unopened collider is an
ancestor of Y , let C be the unopened collider closest to Z. Then π[C ∗∼ Z] is open given
W as is Y +← π[C ∗∼ Z], so W is not a separator. If every unopened collider is an ancestor
of Z, let C be the unopened collider closest to X . Then π[X ∗∼ C] is open given W and
π[X ∗∼ C] +→ Z is open given W. Otherwise, let CY be an unopened collider in An(Y) and
CZ an unopened collider in An(Z), chosen such that no other unopened collider occurs between
CY and CZ on π. Then π[CY

∗∼ CZ] (respectively π[CZ
∗∼ CY]) is not blocked by W as is

Y +← π[CY
∗∼ CZ] +→ Z, so W is not a separator.

Now that we have motivated nearest separators, the question remains, how do we find such
a wondrous thing?

In [ZTL15], we have presented a greedy algorithm that iteratively searches paths from Y to
Z in the moral graph (GAn(Y,Z))

m and forms a nearest separator from the first observed nodes

106

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

of all these paths. In Appendix C, we prove that it is also possible to use paths in G directly,
leading to a rather straight-forward algorithm:

function FIND-NEAREST-SEPARATOR-SLOW(G, Y, Z)
W := ∅
while ∃π := a path from Y to Z active given W do

if ∃V ∈ π: V ∈ O \ {Y, Z} and V is not a collider on π then
W := W ∪ {first such V on π}

else
return ⊥

return W

Despite the simplicity of this algorithm, it has a runtime of O(n(n+m)) because it searches
an entire path π from Y to Z for every node in the resulting set. However, only the first observed
node is actually used and the remaining nodes on the path are ignored. Thus, the runtime can
be improved by just finding the nodes reachable from Y and Z without explicitly constructing
the path. This suggests a breadth-first-search approach that starts at Y , visits adjacent nodes,
continues through unobserved nodes, and stops at observed nodes after adding them to W, but
great care needs to be taken to not add unnecessary nodes. For example, in a DAG V ← Y ← Z
or Y → V ← Z the node V is reachable from Y and Z, but it must not be in a nearest separator,
since it is not on an active d-path from Y to Z. On the other hand, adding nodes to W might
open other paths that were not open at the beginning, e.g., in the DAG G2 of Figure 6.2 the node
V1 is not even reachable from Y given ∅, but it must be included in the nearest separator.

It turns out that the relevant paths are directed paths to Y or Z, i.e., nearest separators
consist of ancestors of Y or Z that are reachable from Y without visiting observed non-colliders.
Although nearest separators and minimal separators are orthogonal concepts, this is actually the
same condition that we have shown for minimal separators in Section 3.3.2, and also the idea
behind ancestral IVs. So we already have an algorithm to find a nearest separator:

function FIND-NEAREST-SEPARATOR(G, Y, Z)
return FINDMINSEP(G, Y, Z, ∅,O)

Proposition 6.13. Given nodes Y and Z, algorithm FIND-NEAREST-SEPARATOR(Y, Z) finds
a nearest separator W relative to (Y,Z) with W ⊆ An(Y,Z) if Y and Z are d-separable, or
returns ⊥ otherwise. The runtime is O(n+m).

Proof. With the first call to REACHABLE, algorithm FINDMINSEP computes a set Z′′ ⊆ A =
pAn(Y ∪ Z) = An(Y ∪ Z) in a DAG on which every node W ∈ Z′′ is reachable from Y by
a walk only containing nodes in A and every non-collider is not in Z′ = O ∩ (A \ (Y ∪ Z)).
Y and Z can only occur as end nodes on the walk. Thus, for every W ∈ Z′′, there exists a walk
wW that is active given Z′′ \W and contains no observed non-collider. These paths still exist
after the removal of further nodes by the second call to REACHABLE. Let W be the final set
returned by FINDMINSEP.

If W is not a nearest separator, there is a W ∈ W and another separator W′ ⊆ O \
{W,Y,Z} with W ⊥6⊥ Z |W′ and Y ⊥⊥ Z |W′. Let π be a path from W to Z d-connected
given W′.

Without an observed non-collider on wW , the combined walk wWπ : Y ∗∼ Z contains no
node of W′ as a non-collider. All colliders on wW and W are in An(Y ∪ Z), and all colliders
on π are in An(W′), so all colliders on wWπ are in An(Y ∪ Z ∪W′). Due to Lemma 3.12,
wWπ is active given W′ and W′ is not a separator.

107

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Corollary 6.14. If a set W returned by FIND-NEAREST-SEPARATOR(Y, Z) contains a descen-
dant of Y , then every set that d-separates Y and Z contains a descendant of Y .

Proof. Let D ∈W be the descendant of Y . Since the graph contains no cycles, D is not an
ancestor of Y . Hence, D is an ancestor of Z and there is a path Y +→ D +→ Z. This path can
only be blocked by descendants of Y .

6.3.2 Finding ancestral and conditional instrumental variables

Having introduced the concept of nearest separators and having shown how to find them, we are
now ready to present an algorithm to test whether a certain variable is an ancestral IV.

function WITNESS-ANCESTRAL-INSTRUMENT(G = (O ⊆ V,E), X, Y, Z)
Gc := (O ⊆ V,E \ (X → Y))
W := FIND-NEAREST-SEPARATOR(Gc, Y, Z)
if (W = ⊥) ∨ (W ∩ De(Y) 6= ∅) ∨ (X ∈W) ∨ (Z ⊥⊥X |W)Gc then

return ⊥
return W

Theorem 6.15. For given nodes X , Y , and Z in a DAG G, algorithm WITNESS-ANCESTRAL-
INSTRUMENT returns a set of variables W that satisfies the properties of an ancestral condi-
tional instrument relative to X → Y if such a set exists; otherwise, the algorithm returns ⊥.
The running time is O(n+m).

Proof. We first prove that if the algorithm returns a set W 6= ⊥, it has found W satisfying the
conditions of Definition 6.4. W is a nearest separator ⊆ An(Y,Z), and thus d-separates Y and
Z in Gc. The conditions of W not d-separating X and Z in Gc as well as W containing no
descendants of Y are explicitly tested by algorithm WITNESS-ANCESTRAL-INSTRUMENT.

Next, let A = O∩ An(Y,Z) \ {X,Y, Z}. Assume Z is an ancestral conditional instrument,
i.e., there exists a set W′ ⊆ A \ De(Y) such that (Y ⊥⊥ Z |W′)Gc and a path π0 between X
and Z which is open in Gc given W′. Then the algorithm returns a set W: Due to Lemma 6.13
and the definition of nearest separators, FIND-NEAREST-SEPARATOR returns a set W ⊆ A
with X /∈W. Due to Lemma 6.12, W does not d-separate X and Z. W does not contain a
descendant D ∈ De(Y) or W′ would contain D as well due to Corollary 6.14.

The runtime follows from the runtime of algorithm FIND-NEAREST-SEPARATOR, elemen-
tary set/graph operations and a d-separation test.

Further, we can use algorithm WITNESS-ANCESTRAL-INSTRUMENT to find a conditional
instrumental variable relative to X → Y .

function FIND-CONDITIONAL-INSTRUMENT(G = (O ⊆ V,E), X, Y)
for all Z in O \ (X ∪ De(Y)) do

Let W :=WITNESS-ANCESTRAL-INSTRUMENT(G, X, Y, Z)
if W 6= ⊥ then return (Z,W)

return ⊥

The soundness of the algorithm and its time complexity O(n(n + m)) follow from The-
orem 6.15. The completeness is a consequence of Theorem 6.6. We obtain the following
result.

108

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

Y U1 U2 U3 V5

V1 V2 V3 V4

Figure 6.3: A DAG with three unobserved nodes {U1, U2, U3}. The minimal, nearest separator
relative to (Y, V1) is {V2}. The only nearest separator relative to (Y, V5) is {}.

Corollary 6.16. There exists an algorithm which, given X and Y , returns a node Z and a node
set W in time O(n(n+m)) such that W instrumentalizes Z if such W and Z exist; otherwise,
it returns ⊥.

These algorithms are complete for effect identification using conditional IVs in the same
sense our algorithms of Chapter 4 are complete for adjustment sets: if it is possible to estimate a
causal effect in a DAG using a conditional IV, then we can find such an IV using our algorithm.

Algorithm FIND-CONDITIONAL-INSTRUMENT spends most of the time recalculating the
nearest separator for different Z candidates, which begs the question of whether it is possible to
improve the runtime by caching the calculation and avoiding the recalculation. If one could find a
nearest separator between Y and Z from a nearest separator between Y and some other node Z ′

in constant time, one could find the ancestral instrument in linear time. Unfortunately, there is
no obvious way to design such an algorithm. For example, Figure 6.3 shows a problematic DAG.
It is necessary to include V2 in a separator between Y and V1. However, V2 or V3 must not be
included in a separator between Y and V5 (or V4), as it would open the path through U3. These
cases cannot be distinguished in constant time, because they look locally exactly the same, both
V2 and V3 are children of U2 and have one other child.

Recall that algorithm FIND-NEAREST-SEPARATOR finds a nearest separator by visiting
reachable ancestors of Y and Z, until it reaches observed non-colliders. The obvious modifica-
tions to find a nearest separator without knowing Z are either to visit ancestors of Y or visit all
descendants of ancestors of Y . Visiting only ancestors of Y will not work, because it would not
include V2 in the example. Visiting the descendants of the ancestors would fail when it includes
both V2 and V3.

Nevertheless, in the special case of graphs without unobserved nodes, ancestral instruments
can be found in linear-time (see Subsection 6.3.6).

6.3.3 Instrumental Variables Relative to the Total Effect

The same methods can be used to find instrumental variables relative to the total effect:

function WITNESS-ANCESTRAL-INSTRUMENT-TOTAL-EFFECT(G, X, Y, Z)
GX := (O \X ⊆ V,E \ (Pa(X)→ X))
W := FIND-NEAREST-SEPARATOR(GX , Y, Z)
if (W = ⊥) ∨ (Z ⊥⊥X |W)G then

return ⊥
return W

Theorem 6.17. For given nodes X , Y , and Z in a DAG G, algorithm WITNESS-ANCESTRAL-
INSTRUMENT-TOTAL-EFFECT returns a set of variables W that satisfies the properties of an
ancestral instrument relative to the total effect of X on Y if such a set exists; otherwise, it
returns ⊥. The running time of the algorithm is O(n+m).

109

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Proof. We first prove that if the algorithm returns a set W 6= ⊥, it has found W satisfying the
conditions of Definition 6.5. W is a nearest separator ⊆ An(Y,Z), and thus d-separates Y and
Z in GX . The condition of W not d-separating X and Z in G is explicitly tested by algorithm
WITNESS-ANCESTRAL-INSTRUMENT-TOTAL-EFFECT.

Next, let A = O ∩ An(Y,Z) \ {X,Y, Z}. Assume Z is an ancestral instrument, i.e., there
exists a set W′ ⊆ A such that (Y ⊥⊥ Z |W′)GX , and a path π0 between X and Z which is
open in G given W′. Assume π0 has the minimal number of colliders. If π0 starts with X ← P ,
let π′0 = π0[P

∗∼ Z]; otherwise, let π′0 = π0. π′0 is also open in GX ; otherwise, there was a
collider C that is an ancestor of X , but then X +← π0[C

∗∼ Z] would have fewer colliders
than π0. Algorithm FIND-NEAREST-SEPARATOR returns a set W ⊆ A that does not block π′0
due to Corollary 6.12 and does not contain P in the case of π′0 6= π0. Therefore, W does not
block π0 in G, and the algorithm returns a set W.

The runtime follows from the runtime of algorithm FIND-NEAREST-SEPARATOR, elemen-
tary set/graph operations, and a d-separation test.

function FIND-INSTRUMENT-TOTAL-EFFECT(G, X, Y)
for all Z in O \ {X,Y } do

Let W :=WITNESS-ANCESTRAL-INSTRUMENT-TOTAL-EFFECT(G, X, Y, Z)
if W 6= ⊥ then return (Z,W)

return ⊥

The soundness of the algorithm and its time complexity O(n(n+m)) follows from The-
orem 6.17. The completeness is a consequence of Theorem 6.7. We obtain the following
result.

Corollary 6.18. There exists an algorithm which, given X and Y , returns a node Z and a node
set W in time O(n(n+m)) such that W instrumentalizes Z relative to the total effect if such
W and Z exist; otherwise, it returns ⊥.

6.3.4 Instrumentalization is NP-hard in general

We have now solved the problem posed in the previous section: find a variable Z and a set W
such that W instrumentalizes Z. Now it is natural to wonder about a slightly different problem:
givenZ, find a set W that instrumentalizesZ. We refer to this as the instrumentalization probleminstrumentalization

problem or testing an instrumental variable. Intuitively, this new problem might seem to be easier than
finding an IV because Z is already fixed and, unlike in FIND-CONDITIONAL-INSTRUMENT,
there is no need to check multiple candidate Z. Perhaps surprisingly, the opposite turns out to
be true: Instrumentalization is computationally harder than finding an IV.

Theorem 6.19. Determining whether, for given X,Y, Z ∈ V in a DAG G with O = V, node Z
is an instrument relative to the total effect of X on Y is an NP-complete problem.

Proof. Obviously, the conditions of Definition 6.3 can be verified in polynomial time after
guessing W ⊆ O. Thus, the problem is in NP. To prove the NP-hardness, we show a reduction
from the 3-SAT problem, which is the canonical complete problem for NP [GJ79b].

Assume ϕ =
∧m
j=1 Cj is an instance of 3-SAT, which is a Boolean formula in conjunctive

normal form over n variables x1, . . . , xn where each clause Cj is limited to exactly three literals

110

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

C1,1

C1,2

C1,3

D1,1

D1,2

D1,3

E1

C2,1

C2,2

C2,3

D2,1

D2,2

D2,3

E2

Cm,1

Cm,2

Cm,3

Dm,1

Dm,2

Dm,3

Em
. . .

Z

Y

X X ′ V1,in

V1,c

V1,c

V1,d

V1,d

V1,exit V2,in

V2,c

V2,c

V2,d

V2,d

V2,exit V3,in

V3,c

V3,c

V3,d

V3,d

V3,exit Vn,in

Vn,c

Vn,c

Vn,d

Vn,d

Vn,exit. . .

Figure 6.4: Reduction of 3-SAT to the instrumentalization problem. Each subgraphCi,j , Di,j , Ei
stands for a clause and each subgraph Vi,· for a variable in the input formula. Dotted lines
connect each clause to the variables of the literals contained in the clause. In this example, the
first clause would be (x2 ∧ x2 ∧ x2) and the second clause would contain x2 and x3.

from x1, x1, . . . , xn, xn. We construct the DAG G = (V,E) for ϕ as follows. Throughout this
proof, n and m always refer to the variables and clauses in the 3-SAT instance and never to
properties of G.

For every clause Ci, we define nodes {Ci,1, Ci,2, Ci,3, Di,1, Di,2, Di,3, Ei} in V, i.e., every
occurring literal has two C and D nodes. Each variable of the Boolean formula is represented
as six nodes {Vi,in, Vi,c, Vi,d, Vi,c, Vi,d, Vi,exit} in the graph. Thus

V = {X,X ′, Y, Z} ∪
{Ci,1, Ci,2, Ci,3 | 1 ≤ i ≤ m} ∪
{Di,1, Di,2, Di,3 | 1 ≤ i ≤ m} ∪
{Ei | 1 ≤ i ≤ m} ∪
{Vi,in, Vi,c, Vi,d, Vi,c, Vi,d, Vi,exit | 1 ≤ i ≤ n}.

We define the edges of G such that, for each variable xi, the nodes Vi,in and Vi,exit are
connected by two paths Vi,in → Vi,c ← Vi,d → Vi,exit and Vi,in → Vi,c ← Vi,d → Vi,exit;
and every Vi,exit is connected to the next Vi+1,in such that a path from V1,in to Vn,exit will
contain either Vi,c or Vi,c as a collider for each variable (see the bottom of Figure 6.4). When
the jth literal of the ith clause is the variable xk, there is a path Y → Ci,j ← Di,j → Ei and
an edge Ci,j → Vk,c (Vk,c), such that any set that opens collider Vk,c (Vk,c) will open a path
from Y to Di,j that cannot be blocked by the set. Di and Ei form a long path through all nodes

111

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

created for clauses (see the top of Figure 6.4). Thus

E = {X → Y } ∪
{Y → Ci,j ← Di,j → Ei | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3} ∪
{Ei → Di+1,j | 1 ≤ i ≤ m− 1 ∧ 1 ≤ j ≤ 3} ∪
{Em → Z} ∪
{Vi,in → Vi,c ← Vi,d → Vi,exit | 1 ≤ i ≤ n} ∪
{Vi,in → Vi,c ← Vi,d → Vi,exit | 1 ≤ i ≤ n} ∪
{Vi,exit → Vi+1,in | 1 ≤ i ≤ n− 1} ∪
{X ← X ′ → V1,in, Vm,exit → D1,1, Vm,exit → D1,2, Vm,exit → D1,3} ∪
{Ci,j → Vk,c | jth literal in clause j is xk} ∪
{Ci,j → Vk,c | jth literal in clause j is xk}.

Let πv,i be the path Vi,in → Vi,c ← Vi,d → Vi,exit and πv,i be Vi,in → Vi,c ← Vi,d →
Vi,exit.

Assume Z is an instrument relative to the total effect of X on Y , so there exists a set W
blocking all paths between Y and Z in GX and a path π connecting X and Z in G opened by W.

π is X ← X ′ → τ1 → τ2 → . . .→ τn → D1,i1 → E1 → . . .→ Dm,im → Em → Z with
τi ∈ {πv,i, πv,i} and ij ∈ {1, 2, 3}: Each τi is entered at Vi,in and can only be left at Vi,c ← Ck,j
(Vi,c) or Vi,exit. If π would include Vi,c ← Ck,j (Vi,c ← Ck,j), the path Y → π[Ck,j

∗∼ Z] was
active; thus, τi is left at Vi,exit. From Vn,exit, only D1,i1 can be reached; and, from each Dj,ij ,
only Cj,ij orEj can be reached. Again π cannot include Cj,ij → or the path Y → π[Cj,ij

∗∼ Z]
was active. From Ej , only a previous Dj,· or a next Dj+1,· can be reached. Since a path can
only visit a node once, it cannot go back to a visited D· or E·, nor can it move through a C·.

For every Dj,ij on π, the path Y → Cj,ij ← π[Dj,ij
∗∼ Z] is open if a descendant of

Cj,ij was in W, so the only child Ch(Cj,ij) ∈ {Vk,c, Vk,c} is not in W and π does not contain
→ Ch(Cj,ij)←. Since π visits one of each Dj,·, every clause j has a literal ij that is satisfied
by the following assignment:

xk =

{
TRUE if Vk,c ∈W,

FALSE if Vk,c ∈W.

The assignment is well-defined since π contains every τi, i.e., either Vi,c ∈W or Vi,c ∈W
is true.

For the other direction of the proof, assume there exists an assignment xi satisfying
formula φ. Let ij ∈ {1, 2, 3} be the first satisfied literal of clause j, W = {Vi,c | xi =
TRUE} ∪ {Vi,c | xi = FALSE} ∪ {Ci,j , Di,j | j 6= ii}, and π = X ← X ′ → τ1 → τ2 → . . .→
τn → D1,i1 → E1 → . . . → Dm,im → Em → Z, with τi = πv,i if xi = FALSE, or τi = πv,i
else. Clearly this W opens π.

It remains to show that Y ⊥⊥ Z |W in GX . The edge X ′ → X is removed in GX , so
any path π′ from Y to Z would start with Y → Ci,j . If j 6= ii, the path Y → Ci,j → is
blocked at Ci,j , and the path Y → Ci,j ← Di,j is blocked at Di,j . If j = ii, the iith literal
satisfies clause Ci, so, if the literal is xk, the child Vk,c of Ci,j is not in W, and similarly for
xk. So the path Y → Ci,j ← Di,j is blocked at Ci,j and the path Y → Ci,j → Vk,c ← (resp.
Y → Ci,j → Vk,c ←) is blocked at Vk,c (resp. Vk,c).

Corollary 6.20. Determining whether, for given X,Y, Z ∈ V in a DAG G with Pa(Y) (O,
node Z is a conditional instrument relative to X → Y is an NP-complete problem.

112

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

Proof. In the proof of Theorem 6.19, the set W does not satisfy the conditions of a conditional
IV since it contains a descendant of Y . We can transform the graph G of this proof to a graph G′,
such that the Z in G is an instrument relative to the total effect of X on Z if and only if Z is a
conditional instrument relative to X → Y in G′. Thereby Y is replaced by an unobserved node
Y ′ and the former edge X → Y is replaced by X → Y ← Y ′. Then Y has no descendants, and
any path connecting Y (X) with Z in G connects Y (X) with Z in G′.

This proof shows that a single unobserved parent of Y is sufficient to make the problem of
testing a conditional IV NP-complete. This hardness remains when each Y ← Y ′ → Ci,j is
replaced by a bidirected edge Y ↔ Ci,j , which shows that the instrumentalization problem is
also hard in semi-Markovian models without unobserved nodes but with bidirected edges.

6.3.5 Testing instruments in completely unobserved graphs

A rather trivial case occurs when the set of observed nodes O is empty except for the examined
nodes X , Y , and Z. Then W = ∅ and the instrumentalization problem can be solved by just
two d-separation tests. Especially the definition of an instrument, the definition of a conditional
instrument, and the definition of an ancestral conditional instrument become equivalent.

Lemma 6.21. Determining whether, for given X,Y, Z ∈ V in a DAG G with O = {X,Y, Z},
node Z is an instrument relative to the total effect of X on Y can be solved in O(n+m) time.

6.3.6 Finding instruments in observed graphs

In this subsection, we consider the special case Pa(Y) ⊆ O, which permits efficient, linear-time
algorithms for (ancestral) conditional instrumental variables.

Above we have described the algorithm WITNESS-ANCESTRAL-INSTRUMENT that is sound
and complete to test whether a variable Z is an ancestral instrumental variable. The functionality
of this algorithm was based on finding a set W := FIND-NEAREST-SEPARATOR(Gc, Y, Z) that
d-separates Y and Z without blocking a path between Y and X , no matter which node is X ,
as long as X is not a descendant of Y . In the special case Pa(Y) ⊆ O, this set W is always
Pa(Y) \X , which is easy to see by examining the evaluation of algorithm FIND-NEAREST-
SEPARATOR: The algorithm starts at the parents of Y and children that are in An(Y, Z) in Gc.
However, no children are such ancestors; hence, the algorithm will only visit the parents, and
when they are all observed, return them and not continue to other nodes.

The set W = Pa(Y) \X does not depend on Z, which greatly simplifies algorithm FIND-
CONDITIONAL-INSTRUMENT. Rather than recalculating W for every candidate node Z, we
can calculate W once and then immediately find all ancestral IVs as nodes not d-separated
from X . This is expressed by the following lemma:

Lemma 6.22. For given X and Y in a DAG G with Pa(Y) ⊆ O, a node Z ∈ O \ {X,Y } is an
ancestral instrument relative to X → Y if and only if

(i) Z is not a descendant of Y ,

(ii) Z is not in Pa(Y), and

(iii) Pa(Y) \X does not d-separate X and Z in Gc.

113

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Proof. This follows from the soundness and completeness of algorithm WITNESS-ANCESTRAL-
INSTRUMENT and the remarks above. Note that Pa(Y) \X d-separates Y and Z, if Z /∈ Pa(Y)
and Z is not a descendant of Y : If a path π from Y to Z in Gc starts with Y ←, it is blocked by
Pa(Y) \X . If it starts with Y →, it is either a directed path to Z or contains a (first) collider C.
The former case cannot occur, because Z /∈ De(Y). In the latter case, the collider can not be
opened by a parent of Y .

This leads to the following algorithm to find all ancestral instruments in linear time:

function ENUMERATE-ANCESTRAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS(G, X, Y)
Assertion: Pa(Y) ⊆ O
Gc := (O ⊆ V,E \ (X → Y))
W := Pa(Y) \X
accept := function(e, U, f, V){

return (U is a collider on eUf ∧ U ∈W)
∨ (U is a non-collider on eUf ∧ U /∈W)

}
return REACHABLE(Gc, X, accept) \ (De(Y) ∪ Pa(Y) ∪X)

The call to REACHABLE finds all nodes not d-separated from X by W as described in the
analysis of TESTSEP.

When we can find all ancestral instrumental variables, we can also find a single one in the
same running time which improves the general algorithm FIND-ANCESTRAL-INSTRUMENT for
observed graphs:

function FIND-ANCESTRAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS(G, X, Y)
Assertion: Pa(Y) ⊆ O
Z := ENUMERATE-ANCESTRAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS(G, X, Y)
return random node of Z

To summarize:

Theorem 6.23. For given X and Y in a DAG G with Pa(Y) ⊆ O, the algorithm ENUMERATE-
ANCESTRAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS returns all ancestral instruments
relative to X → Y , and algorithm FIND-ANCESTRAL-INSTRUMENTS-WITH-OBSERVABLE-
PARENTS finds one of them.

The running time of the algorithms is O(n+m).

For non-ancestral conditional instruments, it is not possible to find one common set W
for all IVs, since the nodes required to open a path from X to one IV might block the path to
another IV. For example, in the DAG Y X Z1 Z2 Z3 opening the path from X
to Z2 using W = {Z1} will block the path to Z3 and using W = {Z3} leads to a path to Z3

with an undefined state. However, the arguments in the proof of Lemma 6.22 still work, i.e.,
the set Pa(Y) \ X is sufficient to block any path between Y and any conditional IV Z, and
adding a non-descendant of Y to W will not open a path between Y and Z. Hence, we can also

114

6.3. ALGORITHMICS OF INSTRUMENTAL VARIABLES

find all conditional IVs in linear-time by performing a reachability search for non-d-separated
nodes and assuming that every collider that might be opened by any set is open. This yields the
following lemma:

Lemma 6.24. For given X and Y in a DAG G with Pa(Y) ⊆ O, a node Z ∈ O \ {X,Y } is a
conditional instrument relative to X → Y if and only if

(i) Z is not a descendant of Y ,

(ii) Z is not a parent of Y , and

(iii) there exists a walk from X to Z in Gc, such that every non-collider is not in Pa(Y) \X
and every collider is in O \ De(Y).

Proof. Let w be the shortest walk between X and Z as in condition (iii). Let W = (Pa(Y) \
X)∪{colliders on w}. This set satisfies the three conditions of Definition 6.2: First, the walk w
is open given W, since w contains no non-collider in Pa(Y) \X and W contains all colliders,
unless one collider C also occurs as a non-collider on w, but then removing the subwalk between
the first and last occurrence of C from w would give a shorter walk satisfying condition (iii),
contradicting the choice of w.

Second, W as chosen by the algorithm blocks all paths between Y and Z in Gc. Assume
there is a path π′ not blocked. If π′ starts with Y ←, it is blocked because Pa(Y) \X ⊆W. If
π′ starts with Y →, it is either a directed path to Z or contains a (first) collider C. The former
case cannot occur, because Z /∈ De(Y). In the latter case, the collider can only be opened by a
descendant of C in W, which would be a forbidden descendant of Y .

Third, W only contains parents of Y as well as colliders that are no descendants of Y and
in O.

In the other direction, if Z is a conditional instrument relative to X → Y , there exists a set
W′ satisfying the conditions of Definition 6.2 and a walk w′ between X and Z opened by W′

with all colliders in W′. Z is not a descendant of Y , because the path Y +→ Z could only be
blocked by a descendant of Y , and thus is not blocked by W′. Z is not a parent of Y and w′

does not contain a non-collider P ∈ Pa(Y) \ X , because the walk Y ← w′[P ∗∼ Z] would
d-connect Y and Z.

The lemma could be stated with paths, but we use walks, so the relevant nodes can be easily
found by a call to REACHABLE.

Using algorithm REACHABLE, we can define a linear-time enumeration algorithm to find all
conditional instrumental variables similarly to the above algorithm for ancestral IVs:

function ENUMERATE-CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS(G, X, Y)
Assertion: Pa(Y) ⊆ O
Gc := (O ⊆ V,E \ (X → Y))
Wn := Pa(Y) \X
Wc := O \ De(Y)
accept := function(e, U, f, V){

return (U is a collider on eUf ∧ U ∈Wc)
∨ (U is a non-collider on eUf ∧ U /∈Wn)

}
return REACHABLE(Gc, X, accept) \ (De(Y) ∪ Pa(Y))

115

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

This enumeration algorithm can then be applied to find and test conditional IVs:

function FIND-CONDITIONAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS(G, X, Y)
Assertion: Pa(Y) ⊆ O
Z := ENUMERATE-CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS(G, X, Y)
return random node of Z

function TEST-CONDITIONAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS(G, X, Y, Z)
Assertion: Pa(Y) ⊆ O
Z := ENUMERATE-CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS(G, X, Y)
return Z ∈ Z

To summarize:

Theorem 6.25. For given X and Y in a DAG G with Pa(Y) ⊆ O, the algorithm ENUMERATE-
CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS returns all conditional instru-
ments relative to X → Y , and the algorithm FIND-CONDITIONAL-INSTRUMENTS-WITH-
OBSERVABLE-PARENTS finds one of them. For an additionally given node Z, the algorithm
TEST-CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS returns TRUE if and
only if Z is a conditional IV relative to X → Y .

The running time of the algorithms is O(n+m).

Therefore, there is a fundamental difference between the complexity of testing whether
a given variable Z is a conditional IV in the case of no unobserved parents and a single
unobserved parent P . The former case is solvable in linear-time and the latter case is NP-
complete as we know from Corollary 6.20. The hardness seems to result from paths that are
opened by descendants of P and then are complicated to block again.

The same hardness occurs when descendants of Y are allowed in W like for instrumental
variables relative to the total effect. As Theorem 6.19 shows testing an IV relative to the
total effect is NP-complete even if all nodes are observed. Hence, we cannot give linear-time
algorithms to find IVs relative to the total effect in the observed case, not even to find ancestral
IVs relative to the total effect.

6.3.7 Enumerating Instrumental Variables

The problems of enumerating all instrumental variables and testing whether a certain variable Z
is an instrumental variable can be reduced to each other for every kind of IV. Once an enumera-
tion algorithm has returned a list Z of all valid IVs, one can test whether a variable Z is an IV
by checking the condition Z ∈ Z, so enumeration is at least as hard as testing. On the other
hand, there are at most n IVs, so the runtime of an enumeration algorithm is at most n times the
runtime required to test one variable.

Hence, we know that enumerating all IVs is NP-complete for instruments relative to the
total effect in graphs with and without unobserved nodes, and for conditional instruments in
graphs with one unobserved parent of Y .

Enumerating all ancestral instruments is, however, always possible in O(n(n+m)), i.e., it
is not harder than finding one ancestral IV.

116

6.4. INSTRUMENTAL SETS

Z1 = ε1
Z2 = ε2
X1 = a1Z1 + a2Z2 + ε3
X2 = b1Z1 + b2Z2 + ε4
Y = c1X1 + c2X2 + ε5

Cov(ε3, ε5) = α1 6= 0
Cov(ε4, ε5) = α2 6= 0

G:

Y

X1 X2

Z1 Z2

a1
b1 a2

b2

c1 c2

α
1 α 2

G:

Y

X1 X2

Z1 Z2

a1
b1 a2

b2

α
1 α 2

Figure 6.5: A linear model, its causal graph G [BP02; Bri04], and G for X = {X1, X2}.

6.4 Instrumental Sets

Often one cannot find a (conditional) IV, because there is no variable d-separated from Y in Gc.
In such cases, it can help to remove more edges from G than just X → Y before searching for
d-separated variables. Now one cannot remove arbitrary edges at random, but under specific
conditions, one can remove a set of edges X→ Y .

[Bri04; Bri10] and [BP02] have studied these conditions and introduced the concept of
instrumental sets. Given variables Y and X = {X1, . . . , Xk}, an instrumental set Z identifies instrumental sets

the parameters c1, . . . , ck of the edges X1
c1→ Y, . . . ,Xk

ck→ Y simultaneously. For this, the
instrumental set Z needs to be d-separated from Y in the graph G = G \ (X → Y). The graph G
formal definition of instrumental sets is given in the following subsections of Section 6.4 with a
three-layer hierarchy of simple and more general instrumental sets.

Until our work, it was not clear whether such instrumental sets can be found efficiently.
Moreover, no results have been known demonstrating that searching for instrumental sets is
hard either. In Section 6.5, we analyze which instrumental sets are hard to find and which can
be found in polynomial time.

6.4.1 Simple Instrumental Sets

First we need to introduce the concept of incompatible paths. Let (X1, . . . , Xk) and (Z1, . . . , Zk)
be tuples of k variables, and π1, . . . , πk be unblocked paths connecting variable Xi to Zi. The
paths π1, . . . , πk are incompatible if for all i and j with 1 ≤ i < j ≤ k, variable Zj does not incompatible

appear in path πi; and, if paths πi and πj have a common variable V , then both πi[V ∼ Xi] and
πj [Zj ∼ V] point to V . This definition implies that it is not possible to rearrange the edges of
incompatible paths to create new paths between the same nodes.

[Bri10] defines simple instrumental sets as:

Definition 6.26 ([Bri10]). The set Z is said to be a simple instrumental set relative to X and Y simple instrumental set

in G if, for a permutation Z1, . . . , Zk of Z and a permutation X1, . . . , Xk of X, it is true:

(a) There exist unblocked paths π1, . . . , πk connecting Z1, . . . , Zk to X1, . . . , Xk, resp., such
that the paths are incompatible, and

(b) the variables Zi are d-separated from Y in G.

It is easy to see that variables Z1 and Z2 of the model in Figure 6.5 satisfy the conditions of
Definition 6.26 relative to {X1, X2} and Y with the paths π1 = Z1 → X1 and π2 = Z2 → X2.

117

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

No conditional IV relative to Xi → Y exists in Figure 6.5, because blocking one of the paths
through X→ Y opens X↔ Y , so Z1 (or Z2) and Y are not d-separable in Gc.

The causal effects c1, . . . , ck are in general identified by a simple instrumental set as follows:
Since Zi and Y are d-separated in G, every path between Zi and Y has the form Zi

∗∼ Xj → Y .
According to Wright’s method of path coefficients, this means the covariance ρZi,Y is the sum
of the products of the path coefficients of all those paths. The first parts Zi ∗∼ Xj correspond to
all paths between Zi and Xj , so the sum of these coefficients becomes the covariance ρZi,Xj .
The coefficient of edge Xj → Y is just cj , so ρZi,Y =

∑
j ρZi,Xjcj . With the abbreviation

aij = ρZi,Xj , we have ρZi,Y =
∑

j aijcj [Bri10].
Since this holds for each variable of the instrumental set, it yields a system of linear

equations:

ρZ1,Y = a11c1 + . . .+ a1kck
. . .
ρZk,Y = ak1c1 + . . .+ akkck.

This system of equations can be solved for c1, . . . , ck. [Bri10] argues that a unique solution
exists generically because the determinant of the matrix of coefficients (aij)ij is not 0. One
of the terms in the determinant is the product of the path coefficients πi, and since those paths
are incompatible, there exist no other paths that could cancel this term. This identification is
generical since the determinant can still be zero for some coefficients despite being a non-zero
polynomial in the coefficients, i.e., when the coefficients are the roots of the determinant. But a
set of roots has Lebesgue measure of zero.

For example, the model of Figure 6.5 yields these equations

ρZ1,Y = a11c1 + a12c2
ρZ2,Y = a21c1 + a22c2,

which can be solved using some linear algebra as(
c1
c2

)
=

(
a11 a12
a21 a22

)−1(
ρZ1,Y

ρZ2,Y

)
.

6.4.2 Generalized Instrumental Sets

Like the concept of conditional instrumental variables generalizes instrumental variables, Brito
and Pearl have generalized the simple instrumental sets through the use of conditioning.

Definition 6.27 ([BP02; Bri04]). The set Z is said to be a generalized instrumental set relativegeneralized instrumental set

to X and Y in G if, for a permutation Z1, . . . , Zk of Z and a permutation X1, . . . , Xk of X,
there exist triples (Z1,W1, π1), . . . , (Zk,Wk, πk), with Wi ⊆ V such that:

(a) Every πi is an unblocked path between Zi and Y including edge Xi → Y , and for
i = 1, . . . , k, Zi and the elements of Wi are non-descendents of Y ,

(b) every set Wi d-separates Zi from Y in G; but Wi does not block path πi, and

(c) paths π1, . . . , πk are incompatible.

118

6.4. INSTRUMENTAL SETS

Brito and Pearl [Bri04; BP02] show ρZi,Y,Wi = φi(Zi,Y,Wi)
ψi(Zi,Wi)ψi(Y,Wi)

, where φi is a linear
function on the covariances ρV,Y for V ∈ Zi ∪Wi, and ψi is a function on the covariances of
the variables given as arguments. They further give a recursive definition of these functions.
Since the functions are defined in terms of covariances, they can be evaluated from observed
data. Covariance ρZi,Y,Wi is zero if and only if φi(Zi, Y,Wi) is zero, so one could think of φi
as the actual covariance between Zi and Y and of ψi as a normalization factor.

Because φi(Zi, Y,Wi) is linear in the covariance of Zi ∪Wi with Y , it can be written
as φi(Zi, Y,Wi) = bi0ρZiY +

∑
j:Wj∈Wi

bijρWjY for some values bij which can be obtained
from the recursive definition.

Since all paths between Vj ∈ Zi ∪Wi and Y contain an edge into Y as a factor, the
covariances can also be written as a linear combination ρVjY =

∑
l αij lcl. Only the coefficients

cl of the edges Xi → Y occur as non-zero terms in the linear combination (i.e., no coefficient
of any edge (Pa(Y) \X)→ Y occurs) because Zi and Y are d-separated in G.

With the abbreviation qij =
∑

k bikaik,j , it follows that φi(Zi, Y,Wi) =
∑

j qijcj , which
is a linear equation system with non-zero determinant that can be solved for cj .

6.4.3 Simple Conditional Instrumental Sets

We introduce a natural intermediate level between the simple and the generalized instrumental
sets by restricting Definition 6.27 such that the sets W1 = W2 = . . . = Wk have to be equal.

Definition 6.28. The set Z is said to be a simple conditional instrumental set relative to X and simple conditional
instrumental setY in G if, for a permutation Z1, . . . , Zk of Z and a permutation X1, . . . , Xk of X, there exist a

set W ⊆ V and pairs (Z1, π1), . . . , (Zk, πk) such that:

(a) Every πi is an unblocked path between Zi and Y including edge Xi → Y , and all Zi and
all elements of W are non-descendents of Y ,

(b) W d-separates every Zi from Y in G; but W does not block any path πi, and

(c) paths π1, . . . , πk are incompatible.

Since a simple conditional instrument set is also a generalized instrumental set, it can be
used to compute the causal effect of Xi → Y in the same way.

6.4.4 Singleton Sets as Instrumental Variables

In the restricted case k = 1, the instrumental sets only contain a single instrumental variable,
and the definitions of instrumental sets become similar to the definitions of single instrumental
variables of Section 6.2. Specifically, the graph G becomes equal to Gc and the restriction to
incompatible paths can be ignored. So Definition 6.26 of simple instrumental sets is not just
similar, but identical to Definition 6.1 of instrumental variables if k = 1.

It is also obvious that Definition 6.27 of generalized instrumental sets becomes equivalent to
Definition 6.28 of simple conditional instrumental sets for singletons. Less obvious is that both
definitions become equivalent to Definition 6.8 of an active conditional instrumental variable:

Lemma 6.29. A set {Z} is a generalized instrumental set relative to {X} and Y if and only if
Z is an active conditional instrument relative to X → Y .

119

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Complexity Algorithm/Reference
Simple Instrumental Sets (Definition 6.26)

Testing O(n+ km) TEST-SIMPLE-IVS

Finding O(n+ km) FIND-SIMPLE-IVS

Simple Conditional Instrumental Sets (Definition 6.28)
Testing O(n+ km) TEST-SIMPLE-COND-IVS

Finding O(nk+3) FIND-SIMPLE-COND-IVS

NP-complete Kumor et al. [KCB19]
Generalized Instrumental Set (Definition 6.27)

Testing O(k(k!)2n3k+1) TEST-GENERAL-IVS

NP-complete Theorem 6.36
Finding O(k(k!)2n4k+1) FIND-GENERAL-IVS

Table 6.3: This table summarizes our algorithms and the complexities to test whether a given set
Z is an instrumental set for given X, Y , and to find an instrumental set Z for given X, Y for the
three layers of instrumental sets. k = |X| is the size of X. The NP-complete problems can be
solved with a runtime exponential in k, which is polynomial time if k is bounded by a constant.

Proof. Let the triple (Z,W, π) satisfy the conditions of Definition 6.27. The path π is of the
form π′ → Y , where π′ is a path between Z and X . It is easy to see that W and π′ satisfy the
conditions of Definition 6.8.

Below we show that the opposite implication is true, too. So, let the set W and path π satisfy
the conditions of Definition 6.8. Since W does not block the path π in Gc, we have X /∈W.
We show that the triple (Z,W, π → Y) satisfies the conditions of a generalized instrumental
set.

Set W consists of non-descendants of Y due to condition 1 of Definition 6.8. Node Z is a
non-descendant of Y , otherwise the directed path between Y and Z could not be blocked by W
using only non-descendants. The path π ends with X and does not contain Y , since W does
not block π in Gc, but d-separates Z and Y in Gc and we have that Y /∈W. So, π → Y is an
unblocked path between Z and Y including the edge X → Y .

W d-separates Z from Y in Gc = G due to condition 2 of Definition 6.8. Set W does
not block the path π → Y , since it does not block π in Gc due to 4. Finally, note that the last
condition of Definition 6.27 is always true for a singleton set.

6.5 Algorithmics of Instrumental Sets

In this section, we analyze the complexity of finding and testing instrumental sets, i.e., for
given X and Y , find an instrumental set Z or test whether an additionally given Z is actually an
instrumental set. The results are shown in Table 6.3.

We begin in Subsection 6.5.1 with an efficient algorithm to find incompatible paths. This
algorithm combined with nearest separators yields algorithms to test and find simple conditional
instrumental sets in Section 6.5.2. In Section 6.4.1, we modify those algorithms to find simple
instrumental sets. In Section 6.5.4, we prove that it is an NP-complete problem to test whether a
given set is a generalized instrumental set. In Section 6.5.5, we give an (inefficient) algorithm to
find incompatible paths, which can be used to find and test generalized instrumental sets.

120

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

6.5.1 Finding Incompatible Paths via Flows

A network flow is the standard algorithm to find disjoint paths. However, flow algorithms
cannot be applied directly to a causal graph, since these algorithms are not designed to handle
d-separation. In Section 3.3.8, we have transformed the causal graph to an undirected moral
graph before applying the flow algorithm. But the moral graph cannot be used to find active paths
– without colliders – for instrumental sets, because paths in the moral graph can skip colliders.
We will thus introduce another transformation of a causal DAG G to a DAG F (G,Z,X,W) in
which active d-paths from Z to X become directed paths from Z to X.

G:

Z1 Z2

F

X1 X2

Y

F (G):

S

Z+
1 Z+

2

F+ X+
2

Z−1 F−

X−1 X−2

Y
Figure 6.6: A DAG G and its flow graph F (G, {Z1, Z2}, Y, ∅).

Nodes of F (G,Z,X,W) consist of two sets, which we denote as V+ and V−, as well as
Y and a new start node S (the node Y as a child of all X does not need to exist in G, but in
the case of instrumental sets, it does exist). The first set, also called (+)-layer, is the induced
subgraph of all ancestors of Z with inverted edges. The second set, called (−)-layer, is the
induced subgraph of all ancestors of X1. If the same node exists in both layers, the two versions
of it are distinct but connected by an edge from the (+)-layer to the (−)-layer. Thus, a d-path
Z ∗← F ∗→ X becomes a directed path Z+ ∗→ F+ → F− ∗→ X−, and any directed path in F
corresponds to a d-path in G that is active given W iff it contains no node of W.

A similar construction was used by Brito for constructing a so-called auxiliary set of
variables for model identification [Bri04].

The flow graph F (G,Z,X,W) = (VF ,EF) with respect to Z, X, W is formally defined
as follows. Let V+ = {V + | V ∈ An(Z)} and V− = {V −|V ∈ An(X)}. Then the vertices
and edges are:

VF = V+ ∪V− ∪ {S, Y }
EF = {V + →W+ | V,W ∈ V+;V ←W ∈ E}

∪ {V + → V − | V ∈ V+ ∩V−}
∪ {V − →W− | V,W ∈ V−;V →W ∈ E}
∪ {S → Z+ | Z ∈ Z}
∪ {X− → Y | X− ∈ X}.

We assign capacities to the nodes as follows: S and Y have infinite capacity, the ± nodes

1Signs + and − can be seen as the arrow head of the edge leaving a node of this layer.

121

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

resulting from nodes in W have zero capacity, and all other nodes have unit capacity. All edges
have infinite capacities.

Lemma 6.30. Given Z,X,W, there exists an |X|-flow from Z to X in F (G,Z,X,W) if and
only if there exist |X| incompatible paths from Z to X in G that are active given ∅ and W.

Proof. (⇐): Let k = |X| and π1, . . . , πk be incompatible paths from Z to X in G. Each πi can
be split into two (possibly empty) arcs π+i and π−i . The first is directed towards Z and the second
is directed towards Y . π+i corresponds to a directed path of plus nodes in F (G,Z,X,W) and
π−i to a directed path of minus nodes. A possibly existing fork Fi on πi corresponds to a subpath
F+
i → F−i . So, for each path πi, there exists a path π′i in F (G,Z,X,W) because π+i only

contains ancestors of Z and π−i only ancestors of X.
These paths π′i do not intersect. If, for i < j, there were two paths π′i and π′j containing

a common node V +, the corresponding paths πi and πj in G would have the form Zi
+← V ,

Zj
+← V , or V ∈ {Zi, Zj}, but πj [Zj ∼ V] would need to point towards V in incompatible

paths. The same argument holds for common nodes in V −.
Since each of these paths π′i can carry a unit flow, an |X|-flow exists.
(⇒): The |X|-flow can be represented as k = |X| paths π′1, . . . , π

′
k from S to Y that are

disjoint (except for the end nodes) and not blocked by W. We can assume that the paths are
chosen such that their total length is minimal2. We can project these paths to d-connected
paths π1, . . . , πk in G, by dropping the ± markers from nodes, the first edge and replacing
→ V + → V − → with a single fork← V →.

If path πi intersects path πj at a non-end node, there is a common node V , which corresponds
to V + and V − in π′i and π′j . We will order the paths such that V − is in π′j and V → occurs in
πj . So each such intersection gives a partial ordering constraint πi ≺ πj .

If these partial orderings cannot be combined to a valid total ordering, there is a cycle
of k′ ≥ 2 paths πi1 ≺ . . . ≺ πik′ ≺ πi1 intersecting at nodes Vi1 , . . . , Vik′ with Vij ←
in πij and Vij → in πij+1 (we set ik′+1 = i1). Since the construction of F (G,Z,X,W)
can neither lead to colliders in the projected paths nor intersections at forks because a path
containing a fork contains the + and − variant of the node, the paths πij+1 have the form
Zij+1

∗← Vij+1 ← ∗∼→ Vij
∗→ Xij+1 . So from every node Vij , there exist directed paths to

nodes in X and Z. Thus, we can replace each path πij with a path Zij
∗← Vij

∗→ Xij+1 . These
new paths are shorter than the original paths, violating the initial assumption (this also holds if
Vij = Zij , Vij = Xij , or the new paths intersect themselves).

If two paths πi and πj with i < j intersect in a node V , π′i contains V +, and π′j contains V −.
Since π′j starts in Z+

j , V cannot be Zj , and Zj does not occur in πi. Because V cannot be a
fork, πi contains V ←, and πj contains→ V →, which makes the paths incompatible.

6.5.2 Testing and Finding Simple Conditional Instruments

Testing Simple Conditional Instruments

Let Y be a node, X ⊆ Pa(Y), and Z a set in a DAG G. In order to test whether Z is a simple
conditional instrumental set, we need to simultaneously find (or verify the existence of) a
set W, permutations of X and Z, and incompatible paths connecting Zi and Xi satisfying
Definition 6.28. It turns out we can again search for a nearest separator between Y and Z in G
to find W because the nearest separator will not block any unnecessary paths.

2Such paths can be found efficiently by a min-cost-max-flow algorithm.

122

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

Lemma 6.31. Let X,Y, Z be nodes in a graph G = (V,E), X ⊆ Pa(Y) a set with X ∈ X,
π : Z +∼ X → Y an active path in G, G = (V,E \ (X→ Y)) a subgraph, and W a nearest
separator relative to (Y, Z) in G.

If there exists a set W′ that d-separates Y and Z in G and does not contain a node of π,
then W also does not contain a node of π.

Proof. Since Y can only occur once in π, π contains only one edge X → Y and the subpath
π[Z ∗∼ X] also exists in G.

Due to Theorem 6.11, W ∪W′ does not block π[Z ∗∼ X] and does not contain X , so W′

contains no non-collider of π. As an active path π contains no colliders.

Since Z is a set and not a single node, we add a helper node Z ′ and connect it as Z ′ ← Z to
all Z ∈ Z before calling algorithm FIND-NEAREST-SEPARATOR on (Y,Z ′).

Knowing W, it is then possible to find the paths and permutations as a max-flow. This idea
yields the following algorithm:

function TEST-SIMPLE-COND-IVS(G, X, Y , Z)
G′ := (V ∪ Z ′, (E \ (X→ Y)) ∪ (Z ′ ← Z))
W := FIND-NEAREST-SEPARATOR(G′, Y, Z ′)
if W = ⊥ ∨W ∩ De(Y) 6= ∅ ∨ Z ∩W 6= ∅ then

return FALSE

GF := F (G,Z,X,W)
if an |X|-flow from Z to X exists in GF then

return TRUE

else
return FALSE

Analysis of the Algorithm. First we show that the algorithm returns TRUE when called on a
simple conditional instrumental set Z. Let W′ be a set and (Zi, πi) pairs satisfying Defini-
tion 6.28. Because all paths from Z ′ pass through a node of Z, W′ d-separates Z ′ and Y in G′.
According to Proposition 6.13 and Corollary 6.14, algorithm FIND-NEAREST-SEPARATOR

finds a nearest separator W with (Y ⊥⊥ Z ′ |W)G′ , which does not contain descendants of Y .
Due to Lemma 6.31, this set does not block any path πi. Due to Lemma 6.30, these paths form
an |X|-flow in F (G,Z,X,W).

In the other direction: if the algorithm returns TRUE, it has found a set W and an |X|-flow
from Z ′ to Y . The set W d-separates every Zi from Y in G since it d-separates Z ′ from Y
in G′.

The first two conditions of Definition 6.28 are satisfied by the construction, and because no
element of Z can be a descendant of Y unless there is a path in G that can only be blocked by a
descendant of Y .

From Lemma 6.30, we know there are |X|-incompatible paths satisfying condition (c).
The runtime is dominated by the runtime of the maximum flow algorithm. Because the

capacities in the flow network are integers, and the value of any flow is bounded by k, the
maximum flow can be constructed in time O(n + km) (see [KT06, Chapter 7.1]). Thus, the
maximum flow here is slightly faster than the flow discussed in Section 3.3.8 without a bound
on the size of the flow.

This proves:

123

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Proposition 6.32. Algorithm TEST-SIMPLE-COND-IVS tests, for a given node Y and node
sets X and Z in a causal DAG G, whether Z is a simple conditional instrumental set relative to
(X, Y). The runtime of this algorithm is O(n+ km).

Finding Simple Conditional Instruments

Using the above algorithm, it is trivial to find a simple conditional instrumental set by enu-
merating all possible sets of size k = |X| and testing if any of those is a simple conditional
instrumental set:

function FIND-SIMPLE-COND-IVS(G, X, Y)
for every subset Z ⊆ O with |Z| = |X| do

if TEST-SIMPLE-COND-IVS(G,X, Y,Z) then
return Z

return ⊥

Unfortunately, there are O(nk) possible sets Z, so the runtime of the algorithm is O(nk(n+
km)) = O(nk+3). One might attempt to find a faster algorithm, however, Kumor et al. have
shown recently that finding Z is NP-complete [KCB19], so it is unlikely that a significantly
faster algorithm exists.

Proposition 6.33. Algorithm FIND-SIMPLE-COND-IVS finds, for a given node Y and a node
set X in a causal DAG G, a simple conditional instrumental set Z relative to (X, Y) if such a
set exists; otherwise, it returns ⊥. The runtime of this algorithm is O(nk+3).

6.5.3 Testing and Finding Simple Instruments

Testing Simple Instruments

Testing whether a given Z fulfills the conditions of simple instruments can be done in time
O(n + km) using the algorithm TEST-SIMPLE-COND-IVS. To this aim, we modify the
algorithm by replacing the calculation of W as a nearest separator with a fixed W = ∅.

function TEST-SIMPLE-IVS(G,X, Y,Z)
G := (V,E \ (X→ Y))
if Z and Y are not d-separated in G then

return FALSE

GF := F (G,Z,X, ∅)
if an |X|-flow from Z to X exists in GF then

return TRUE

else
return FALSE

Analysis of the Algorithm. Algorithm TEST-SIMPLE-IVS is identical to TEST-SIMPLE-COND-
IVS with W replaced by ∅. Since a simple conditional instrumental set with empty W is a
simple instrumental set, TEST-SIMPLE-IVS tests whether Z is a simple instrumental set.

Proposition 6.34. Algorithm TEST-SIMPLE-IVS tests, for a given node Y and node sets X and
Z in a causal DAG G, whether Z is a simple instrumental set relative to (X, Y). The runtime of
this algorithm is O(n+ km).

124

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

Finding Simple Instruments

Now we present an algorithm to find a simple instrumental set Z for given X and Y . Since
simple instrumental sets are similar to simple conditional instrumental sets, one might think
finding them is an NP-complete problem, too. Fortunately, simple instrumental sets can be found
efficiently by searching a maximal flow from S to Y through every node that might be in Z.
Since there must be an active path between X and each node in Z, only nodes in De(An(X))
might be in Z.

function FIND-SIMPLE-IVS(G = (O ⊆ V,E), X, Y)
Let G = (V,E \ (X→ Y))
Let B be all nodes d-separated from Y in G
D := De(An(X)) ∩O ∩B
GF := F (G,D,X,Pa(Y) \X)
if an |X|-flow in GF exists then

return Z = “children of the source S on the flow’s paths”
else

return ⊥

Analysis of the Algorithm. Assume there exists a simple instrumental set Z. Then all nodes of Z
are d-separated from Y in G, observed, and not d-separated from Y in G, so Z ⊆ De(An(X)) ∩
O ∩B. There exist |X|-many incompatible, unblocked paths between Z and X not containing
parents of Y , so due to Lemma 6.30, there exists an |X|-flow in F(G,D,X,Pa(Y) \X). Thus,
FIND-SIMPLE-IVS returns a set.

Assume FIND-SIMPLE-IVS returns a set Z. Then it is d-separated from Y . The flow found
by FIND-SIMPLE-IVS can be represented as k disjoint paths π1, . . . , πk starting at S and then
visiting a node of D, from which we form set Z. All nodes in Z are observed and d-separated
from Y in G. Each path πi = V +

1
∗∼ V −li consists of a (possibly empty) subpath of plus nodes

followed by a subpath of minus nodes. If the path contains a plus node, it contains a subpath
V +
j → V −j+1 at which it switches from the plus layer to the minus layer. All preceding nodes on

the path are (+)-ancestors of V +
j in the flow graph, so they are descendants of Vj in G. Hence,

every node on these paths is in De(An(X)) of G. Thus and due to Lemma 6.30, there exist
unblocked, incompatible paths in G between Z and X. So Z is a simple instrumental set.

If no |X|-flow exists, but a k′-flow with k′ < |X| exists, the children of the source form
a simple instrumental set Z of size k′. So this algorithm can be modified to find a simple
instrumental set of maximal size.

That FIND-SIMPLE-IVS has polynomial runtime unlike algorithm FIND-SIMPLE-COND-
IVS, shows that the complexity of finding simple conditional instrumental sets results from
the difficulty of finding a separator W. Although we can use a nearest separator as W, such
a nearest separator cannot be calculated without knowing Z (cf. our remarks at the end of
Section 6.3.2).

Proposition 6.35. Algorithm FIND-SIMPLE-IVS finds, for a given node Y and a node set X in
a causal DAG G, a simple instrumental set Z relative to (X, Y) if such a set exists; otherwise, it
returns ⊥. The runtime of this algorithm is O(nk+3).

125

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

Z1 Z2 ZnC

Z ′0

Z0

V 1
1 V 2

1
. . . V o1

1

V s
1 V t

1

V
1
1 V

2
1

. . . V
o1
1

V 1
2 V 2

2
. . . V o2

2

V s
2 V t

2
. . . V t

n

V
1
2 V

2
2

. . . V
o2
2

X0

Y

C1 D1 X1

C2 D2 X2
...

CnC DnC XnC

Figure 6.7: A graph G with a generalized instrumental set Z constructed from a 3-SAT instance.

6.5.4 Hardness of Testing Generalized Instrumental Sets

Now we prove that it is an NP-complete problem to test whether a given set is a generalized
instrumental set:

Theorem 6.36. Given a DAG G = (V,E), a node Y , and sets X,Z ⊂ V, determining whether
Z is a generalized instrumental set relative to X and Y is an NP-complete problem.

Proof. The conditions of Definition 6.27 are easily verified after guessing the tuples (Z1,W1, π1),
. . ., (Zk,Wk, πk). Thus, the problem is in NP.

To prove the NP-hardness, we show a polynomial time reduction from 3-SAT to the problem.
Let V be a set of nV variables and let C = (V1,1∨V1,2∨V1,3)∧(V2,1∨V2,2∨V2,3)∧. . . (VnC ,1∨
VnC ,2 ∨ VnC ,3) with Vi,j ∈ V ∪ {V | V ∈ V} be a 3-SAT instance with nC clauses. The
variables V = {Vi | 1 ≤ i ≤ nV } and clauses of C = {Ci | 1 ≤ i ≤ nC} are arbitrarily
indexed. Let oi = |{C ∈ C | Vi ∈ C}|, resp. oi, denote the number of occurrences of literal Vi,
resp. V i, in C. W.l.o.g. we assume oi > 0 and oi > 0.

We adapt the proof given by [EIS76] for multi-commodity flows to instrumental sets. So we
construct a DAG G as shown in Figure 6.7.
G has the following nodes:

VG = {Y,Z ′0, Z0, . . . , ZnC , X0, . . . , XnC}
∪ {C1, . . . , CnC , D1, . . . , DnC}
∪ {V s

i , V
t
i | 1 ≤ i ≤ nV }

∪ {V j
i | 1 ≤ i ≤ nV ∧ 1 ≤ j ≤ oi}

∪ {V j
i | 1 ≤ i ≤ nV ∧ 1 ≤ j ≤ oi}

126

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

and edges:

E = {Z0 ← Z ′0 → V s
1 }

∪ {V s
i → V 1

i → . . .→ V oi
i → V t

i | 1 ≤ i ≤ nV }

∪ {V s
i → V

1
i → . . .→ V

oi
i → V t

i | 1 ≤ i ≤ nV }
∪ {V t

i → V s
i+1 | 1 ≤ i ≤ nV − 1}

∪ {V t
nV
→ X0 → Y }

∪ {Zi → V k
j | 1 ≤ i ≤ nC ∧ 1 ≤ j ≤ nV ∧ 1 ≤ k ≤ oj}

∪ {Zi → V
k
j | 1 ≤ i ≤ nC ∧ 1 ≤ j ≤ nV ∧ 1 ≤ k ≤ oj}

∪ {V k
j → Ci | the k-th occurrence of Vj is in Ci}

∪ {V k
j → Ci | the k-th occurrence of V j is in Ci}

∪ {Ci → Di → Xi → Y | 1 ≤ i ≤ nV }
∪ {Y ↔ Di → Z0 | 1 ≤ i ≤ nV }

We use indices 0 to nC for Xi instead of 1 to nC + 1 to simplify the notation. We claim that
there exists an assignment to V1, . . . , VnV that satisfies C =

∧
iCi iff Z = {Z0, . . . , ZnC} is a

generalized instrumental set relative to X = {X0, . . . , XnC} and Y in G.
(⇐): Assume Z is a generalized instrumental set. Then there exist tuples (Zi0 ,W0, π0),

(Zi1 ,W1, π1), . . . , (ZinC
,WnC , πnC) satisfying Def. 6.27. First we show that the path from

Z0 actually ends at X0 → Y . There are active paths Y ↔ Di → Z0 for all Di, which need to
be blocked. Thus, nodes Di are in the Wj associated with the path starting at Z0, so the path
cannot contain Di. Since X1, . . . , XnC can only be reached by traversing D1, . . . , DnC , the
path has to end at X0.

Since the nodes Z1, . . . , ZnC are all connected to exactly the same nodes, we can assume
w.l.o.g. that path πi starts at Zi.

Every node V j
i is only visited by a directed subpath → V j

i → because every path can
only enter it through a → edge. So none of these nodes is visited by two paths; otherwise,
condition (c) of Definition 6.27 (that the subpath πi′ [V

j
i
∗∼ Xi′] has to point to V j

i) would be
violated.

Since path π0 can neither visit node Ci nor Zi for i > 0 through a collider, it visits V s
i and

then passes either through the upper path or the lower path to V t
i . We assign the following

values to the variables Vi

Vi :=

{
TRUE if V 1

i /∈ π0,
FALSE otherwise.

This assignment satisfies the formula: Assume there is clause Ci that is not satisfied. We
know that path πi has the form Zi → W j

k → . . .W j′

k → Ci → Di → Xi → Y for W ’s
corresponding to one variable Vk or its negation V k, since πi cannot cross through V t

k to another
lobe; otherwise, it would intersect π0 at V t

k . Also W t
k /∈ π0. If W j

k corresponds to Vk, then Vk
is TRUE and clause Ci contains variable Vk. If W j

k corresponds to V k, then Vk is FALSE and Ci
contains the negation. So Ci is satisfied.

(⇒): Let Vi ∈ {TRUE, FALSE} be a satisfying assignment for the variables Vi. Assume
Ci is satisfied by a literal W ∈ Ci which is the k-th occurrence of a variable Vj in C. Let

127

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

v(Ci) ∈ {V k
j , V

k
j } be the node corresponding to W . Let p(i) = V 1

i → . . . → V oi
i if

Vi = FALSE; otherwise, let p(i) = V
1
i → . . .→ V

oi
i . We choose the following tuples

• (Z0, {Ci, Di | 1 ≤ i ≤ nC}, Z0 ← Z ′0 → V s
1 → p(1) → V t

1 → V s
2 → p(2) → V t

2 →
V s
3 → . . .→ p(nV)→ V t

nV
→ X0 → Y),

• (Z1, ∅, Z1 → v(C1)→ C1 → D1 → X1 → Y),
• . . .,
• (ZnC , ∅, ZnC → v(CnC)→ CnC → DnC → XnC → Y),

which satisfy the conditions of Definition 6.27:
(a) Y does not have any descendants, and each πi is an unblocked path connecting Zi with

Xi → Y .
(b) In G, all paths starting at Y begin with Y ↔ Di. In the first tuple, the paths Y ↔ Di →

Z0 are blocked by Di and the paths Y ↔ Di ← Ci ← are blocked by Ci. In all other tuples,
the paths Y ↔ Di → Z0 are irrelevant and the paths Y ↔ Di ← Ci ← are blocked by Di. No
path πi is blocked by Wi.

(c) No path π1, . . . , πnC has a common node with π0. Otherwise, a node V j
k would cor-

respond to a variable Vk that is FALSE, but literal Vk satisfies clause Ci; or a variable that is
TRUE but literal V k satisfies Ci. Paths π1, . . . , πnC are vertex disjoint or the k-th occurrence of
a variable would be in two different clauses.

6.5.5 Testing and Finding Generalized Instrumental Sets with a Pebble Game

If the size of the set Z is bound by a constant, it is possible to test whether Z is a generalized
instrumental set in polynomial time. The testing algorithm needs to find separators Wi and
incompatible paths πi. We will see that nearest separators can again be used as separators Wi,
but finding the paths πi has become harder. Since each path πi needs to be unblocked by a
different Wi, the end nodes of the paths are not interchangeable, so the paths cannot be found
by a network flow.

Nevertheless, for a fixed k, finding k paths that are just node-disjoint is a well-researched
problem (k-vertex disjoint paths problem, k-VDPP, or k-linkage), and known to be NP-complete
in general directed graphs [GJ79a], but solvable in DAGs in polynomial time [FHW80].

Generalized Vertex Disjoint Paths Problem

The problem k-VDPP asks, given 2k not necessarily distinct nodes (s1, . . . , sk), (t1, . . . , tk),
whether there are k paths from each si to ti that do not share a common node except for the end
nodes.

We generalize k-VDPP to find directed paths that satisfy the following conditions:

Definition 6.37 (Generalized vertex disjoint paths problem (k-GVDPP)). Let G = (V,E)
be a DAG, let (S1, . . . , Sk) and (T1, . . . , Tk) be 2k not necessarily distinct nodes of G, let
W1, . . . ,Wk ⊆ V be sets of nodes with Si, Ti /∈Wi, and let C ⊆ {{i, j} | 1 ≤ i, j ≤ k} be
a set of pairs.

The k-GVDPP asks whether there exist paths pi such that

(a) pi is a directed path from Si to Ti,

(b) pi does not contain a node of Wi, and

(c) pi does not share a node with pj , i 6= j, unless that node is Si, Ti, Sj , Tj; or {i, j} ∈ C.

128

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

We generalize the pebbling game algorithm given by [SP78] for k = 2 and generalized by
[FHW80] to arbitrary k.

Our pebble game is defined by the following rules, of which rule 2 and 3 may be applied
arbitrarily often in any order. In the description below, the level of a node V is defined to be the
length of the longest, directed path starting at V .

1. Initially: create k pebbles p1, . . . , pk, and place pi on Si.

2. Pebble pi may be moved along a directed edge V →W if W is not in Wi, and

- V has the largest level of any pebbled node, and
- there is no pebble pj on W unless {i, j} ∈ C or W ∈ {Sj , Ti}.

3. Pebble pi may be removed once it reaches Ti.

4. The game is won if all pebbles are removed.

This game is equivalent to the k-GVDPP problem and it can be played efficiently:

Lemma 6.38. The pebble game can be won iff there exists a solution to k-GVDPP.

Proof. If there exists a solution, it is easy to see that the game can be won by moving pebble pi
along the path pi whenever pebble pi can be moved.

If the game can be won, the pebbles trace paths pi through the graph that satisfy the
conditions of k-GVDPP: Each pi is a directed path from Si to Ti and does not contain a node
of Wi. Two paths pi and pj with {i, j} /∈ C cannot intersect each other in an internal node;
otherwise, there would be a node X that is visited by pebble pi and pj . Assume w.l.o.g. pi
moves to node X first. Then the game cannot be won since pebble pj on an ancestor of X must
move before pebble pi, but cannot move to node X as long as pi is on that node.

Lemma 6.39. There exists an O(k(n+ 1)k+1) algorithm to solve k-GVDPP.

Proof. There are only O((n + 1)k) different pebble placements and O((n + 1)k) different
transitions of one pebble moving to another node, so a reachability search on the graph of all
placements can be done in O(k(n+ 1)k+1).

Testing Generalized Instrumental Sets

We now reduce the problem of testing whether a set Z is a generalized instrumental set relative
to X and Y to the k-GVDPP. Thereby, we use nearest separators as the sets Wi. Because the
paths πi of the generalized instrumental set are active given ∅, they consist of one or two directed
paths each, whose end nodes become the nodes Si′ and Ti′ of k-GVDPP. The first end node is
in Z and the last end node in X. If the path πi is split into two directed paths, the fork on the
path becomes another end node for k-GVDPP. Since we cannot know a priori, which node is
the fork, we repeat the construction and try every node of the graph as the fork. The condition
that the paths need to be incompatible can be encoded in the constraints C.

129

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

function TEST-GENERAL-IVS(G, X, Y , Z)
k := |X|
for i in 1, . . . , k do

Wi := a nearest separator for (Y,Zi) in G
if Wi = ⊥ ∨ (Wi ∩ De(Y) 6= ∅) then

return FALSE

for all permutations π and π′ of {1, . . . , k} do
Let (X1, . . . , Xk) corresponds to π
Let (Z1, . . . , Zk), (W1, . . . ,Wk) correspond to π′

if ∃i : Xi ∈Wi then continue
if ∃i, j : i < j ∧Xi = Zj then continue
for all F1, . . . , Fk ∈ V \ (Y ∪W1 ∪ . . . ∪Wk) do

if ∃i 6= j : Fi ∈ {Fj , Xj , Zj} then
continue

F := {Fi | 1 ≤ i ≤ k}
k′ := k + |F \ (X ∪ Z)|
Construct a k′-GVDPP instance
S1, . . . , Sk′ , T1, . . . , Tk′ ,W

′
1, . . . ,W

′
k′ ,C:

p := 1
U := ∅
C := ∅
for i in 1, . . . , k do

if Fi = Xi then
ADD-ARC (i,Xi, Zi,Wi ∪ F ∪ Y)

else if Fi = Zi then
ADD-ARC (i, Zi, Xi,Wi ∪ F ∪ Y)

else
ADD-ARC (i, Fi, Xi,Wi ∪ F ∪ Y)
ADD-ARC (i, Fi, Zi,Wi ∪ F ∪ Y)

if (S1, . . . , Sk′ , T1, . . . , Tk′ ,W
′
1, . . . ,W

′
k′ ,C)

is a Yes-instance of k′-GVDPP
then return TRUE

return FALSE

Analysis of the Algorithm. The algorithm begins by creating a nearest separator relative to
(Y,Zi) in G for each i to use it as set Wi. Next it enumerates all permutations Z1, . . . , Zk of Z
and X1, . . . , Xk of X as well as all combinations for directed and fork paths for each πi, i.e., πi
is considered either as directed from Zi to Xi, directed from Xi to Zi, or containing a fork Fi.
Knowing the direction and/or fork of the path, we can treat it as one or two directed paths. From
condition (c) of Definition 6.27, it follows that two of these directed paths can only intersect
each other iff one path is directed towards a Zi and the other path towards an Xj with i < j.
These nodes and constraints directly correspond to a k-GVDPP instance with up to 2k nodes.
We use an auxiliary procedure, called ADD-ARC and given below, to add the start and end nodes
to the k-GVDPP instance and update the set C appropriately.

If one of these k-GVDPP instances has a solution, Z is a generalized instrumental set, and
the algorithm returns TRUE.

130

6.5. ALGORITHMICS OF INSTRUMENTAL SETS

Below, we present the pseudocode for ADD-ARC:

function ADD-ARC(i, S, T,W)
Sp := S; Tp := T ;
if T = Zi then

. Path towards the instrument
W′

p := W ∪ Z ∪ {Xj | i ≥ j ∨ Fj = Xj}
U := U ∪ {p}

else
. Path towards Y

W′
p := W ∪ {Zj | i ≤ j ∨ Fj = Zj} ∪X

C := C ∪ {{u, p} | u ∈ U}
W′

p := W′
p \ {S, T}

p := p+ 1

Lemma 6.40. There exists an algorithm which, for a given Y and sets of k nodes X and Z,
using a solver for GVDPP, tests whether Z is a generalized instrumental set relative to X and
Y calling the solver O((k!)2nk) times for k′-GVDPP instances, where k′ ∈ {k, . . . , 2k}.

Proof. If Z is a generalized instrumental set relative to X and Y , algorithm TEST-GENERAL-
IVS will return TRUE: Let (Z1,W1, π1), . . . , (Zk,Wk, πk) be the triples of Definition 6.27.
We consider the iteration in which the algorithm tests the same permutation of X,Z. These
triples remain valid if we replace the Wi with the nearest separating sets used by the algorithm,
because a nearest separator does not contain descendants of Y and neither blocks path πi nor
contains Xi if such a set exists due to Proposition 6.13, Corollary 6.14 and Lemma 6.31. There
is no i < j with Xi = Zj , since Zj must not appear in path πi.

Now consider the iteration in which each Fi is the fork on path πi or, if πi does not have
a fork and is a directed path from Zi to Y , is Zi. Since the paths end at Y , this fork cannot
be Y . It cannot be in Wi or πi was blocked. A path πi cannot intersect πj at a fork, since
no arrow at a fork points to that fork violating condition three of Def. 6.27. So the condition
∃i 6= j : Fi ∈ {Fj , Xj , Zj} is false, and the algorithm does not abort there. The set F is the set
of all forks, including Zi for paths πi without a fork.

The algorithm now creates a (k′ = k + |F \ (X ∪ Z)|)-GVDPP instance, whose solution is
the paths πi, whereby paths containing a fork are split into two directed paths πi,←, πi,→ and
the tail→ Y of every path is removed. It does this by calling ADD-ARC for all endpoint node
pairs of the split paths in the innermost loop.

The sets W′
i created by ADD-ARC do not contain an internal node of the respective πi,← or

πi,→: This is true for the initial Wi ∪ F ∪ Y as argued above. An arc πi,← towards Zi cannot
contain another Zj . For j > i, this follows directly from Def. 6.27 (c), for j < i, πi,←[Zi

∗∼ Zj]
should point towards Zj , but this path is directed towards Zi. For the same reason, it cannot
contain a node Xj with j < i. It also cannot contain Xj if Xj is a fork on πj . An arc πi,→
cannot contain a Zj with j > i due to condition (c) of Definition 6.27. If πj is a directed path
from Zj to Y , πi cannot contain Zj with j < i as πj [Zj ∗∼ Y] should point towards Zj . πi
cannot contain a Xj with j < i because then πj [Xj

∗∼ Y] should point towards Xj , but is an
edge Xj → Y . For j > i, πi[Xj

∗∼ Y] should point towards Xj , but all edges on πi,→ point
towards Y . Since πi is a path, Xi as well as Zi can only occur in one of the arcs πi,←, πi,→.

Also all intersecting arcs are included in the set C: The set U contains the indices of all
upwards directed arcs, i.e., when ADD-ARC for πi,→ is called, U contains the indices of all

131

IDENTIFICATION VIA INSTRUMENTAL VARIABLES IN SEMS

πj,← with j < i. Arcs directed in the same direction, i.e., πi,→ and πj,→ or πi,← and πj,←,
cannot intersect each other, since the edges at an intersection have to point in opposite directions.
So only intersections between an upward πi,← and a downward directed arc πj,→ occur, with
i < j due to condition (c) of Definition 6.27 . These are precisely the arcs contained in C.

Thus, the generated k′-GVDPP instance is solvable and the algorithm returns TRUE.
In the other direction, if the algorithm returns TRUE, Z is a general instrumental set: Then

the algorithm has fixed permutations X1, . . . , Xk, Z1, . . . , Zk, sets W1, . . . ,Wk, and paths
π1 = π1,←π1,→ → Y, . . . , πk = πk,←πk,→ → Y , where πi,←, πi,→ denote the paths in the
solution of k′-GVDPP for the nodes added by the call of ADD-ARC for i in the respective
direction. Wi does not contain descendants of Y , d-separates Zi from Y in G, and does not
block πi.

For 1 ≤ i < j ≤ k, the node Zj does not occur as an internal node in πi, since it was added
to the forbidden nodes in W′

·. If paths πi and πj have a common node, this node is either an
endpoint node (of an arc) or the indices of the corresponding arcs were added to C.

If two endpoints nodes are the same, this node cannot be a fork in πi or πj , since there
is no Fi with Fi ∈ {Fj , Xj , Zj} for i 6= j. There is also no Zi = Zj or Xi = Xj ; thus, the
intersecting node has to be Zi = Xj with i ≤ j due to the test after the X permutation. If i = j,
it is not an intersection. Because Fi 6= Zi and Fj 6= Xj , both πi[Zi ∗∼ Y] and πj [Zj ∗∼ Xj]
point towards Zi = Xj satisfying 6.27 (c).

If it is only an endpoint node in one arc, it can only be a node of X ∪ Z, because all other
endpoint nodes are in F and thus forbidden. Within πi,←, only a node Xj with i < j and
Fj 6= Xj can occur, leading to subpaths in πi and πj of ← Xj ← and → Xj →. Within
πi,→, only Zj with i > j and Fj 6= Zj occurs, leading to subpaths→ Zj → and Zj ←. Both
intersections are allowed by Definition 6.27 (c).

If the paths intersect at an internal node V , it only occurs in arcs with indices in C, i.e., πi,←
and πj,→ with i < j. Thus, the subpaths are← V ← and→ V →, which is also allowed by
Definition 6.27 (c).

Hence, all conditions of Definition 6.27 are satisfied, and Z is a generalized instrumental
set.

Proposition 6.41. Algorithm TEST-GENERAL-IVS tests, for a given node Y and node sets
X and Z in a causal DAG G, whether Z is a simple instrumental set relative to (X, Y). The
runtime of this algorithm is O(k(k!)2n3k+1).

Finding Generalized Instrumental Sets

Like in the case of simple conditional instrumental sets, we only know how to find generalized
instrumental sets with an exhaustive search:

function FIND-GENERAL-IVS(G, X, Y)
for every subset Z ⊆ O with |Z| = |X| do

if TEST-GENERAL-IVS(G,X, Y,Z) then
return Z

Proposition 6.42. Algorithm FIND-GENERAL-IVS finds, for a given node Y and a node set X
in a causal DAG G, a simple instrumental set Z relative to (X, Y) if such a set exists; otherwise,
it returns ⊥. The runtime of this algorithm is O(k(k!)2n4k+1).

132

6.6. DISCUSSION

6.6 Discussion

We have analyzed the complexity of conditional instrumental variables and instrumental sets. In
both cases, it is NP-complete to test whether a given IV (or set of IVs) is actually a conditional
IV (or generalized instrumental set). We have defined a less general variant that can be tested
and found in polynomial time. Table 6.2 and Table 6.3 present all results.

Our ancestral instrumental variables, as a special case of conditional IVs, can be tested
in linear-time and can be found as well as enumerated in O(nm). Furthermore, whenever a
conditional IV exists, an ancestral IV also exists. Hence, we can always find a conditional
IV in O(nm) when one exists. From a computational complexity perspective, the result that
instrumentalization is hard whereas finding a conditional IV is easy is rather intriguing. This
can be explained by noting that the solution space of the IV problem decomposes into some
instances that are easy to find (ancestral IVs) and others that are hard to find (non-ancestral
IVs). One can also consider testing as a constrained version of finding with the given IV as an
additional constraint. It is not unusual that an easy problem becomes hard when constraints are
added. Nevertheless, in this case, adding as a second constraint that the conditioning set should
be ancestral changes the problem to testing an ancestral IV and makes the problem easy again.

A simple conditional instrumental set of size k, as a special case of generalized instrumental
sets, can be tested in O(n + km). Finding it or enumerating all such sets requires O(nk+3)
time, which is only polynomial if the size k is bounded.

Here adding the constraint that all conditioning sets Wi should be equal has changed a
hard problem to an easy problem. However, comparing the network flow to the pebble game
shows that generalized instrumental sets are hard because the connections between X and Z are
not arbitrary. The network flow does not distinguish the nodes of X (Z) from each other and
might connect any pair of them by a path, while the pebble game only connects Xi to Zi. So the
constraint on the conditioning sets actually removes constraints of the paths.

One surprising result is that it is possible to find a nearest separator that does not block
the path between X and Z without knowing this path and without considering X . Even
more surprising is that it can be found in linear-time and is related to the minimal separators.
In this chapter, we have used minimal separators as nearest separators, whereby algorithm
FINDMINSEP finds the minimal separator with two calls to REACHABLE. It is easy to see
that the first call to REACHABLE already returns a nearest separator. Thus, one could inversely
implement the nearest separator algorithm FIND-NEAREST-SEPARATOR as a single call of
REACHABLE and then define minimal separators as two calls to FIND-NEAREST-SEPARATOR

[ZL19].
An interesting problem for future research is also to find an efficiently testable subclass of

generalized instruments which is larger than the simple conditional instrumental sets provided
in this thesis.

133

7 Discussion

We have developed efficient algorithms for separating sets, adjustment sets, and instrumental
variables. Most of the algorithms have been implemented in DAGitty [Tex+16].

They are the first sound and complete algorithms to identify the causal effect by covariate
adjustment in DAGs, RCGs, and MAGs. Whenever an adjustment set exists, they can find
one or even a minimal one in linear-time. We can also find a minimum adjustment set or
enumerate all adjustment sets with polynomial delay. Although the causal effect in some models
cannot be identified by adjustment and requires more powerful methods like the do-calculus,
identification by adjustment is preferred in practice due to its statistical properties [SVR10]. We
have empirically evaluated methods beyond adjustment in random graphs.

For linear SEMs, we give the first sound and complete algorithms to identify the direct causal
effect with a conditional instrumental variable. Although testing whether a certain variable is a
conditional IV is NP-complete, we can find some conditional IVs in O(nm) time whenever at
least one exists. We have also studied instrumental sets, and although testing and finding them is
NP-complete in the most general case, simple conditional sets can be tested and – if of bounded
size – found in polynomial time.

Some open questions remain for further research:

• Can a minimum separator and adjustment set be found in time O(nm)?

• Can the delay complexity of enumerating minimal separators and adjustment sets be
improved to O(nm)?

• Can our algorithms be generalized to further classes like PAGs or directed cyclic graphs?

• Are nearest separators useful for other classes than DAGs or SEMs?

• Is it possible to find ancestral instruments in linear-time?

• What is the complexity of identifying causal effects in SEMs?

• What is the largest subclass of SEMs in which the causal effect can be identified in
polynomial time?

• Can instruments relative to the total effect be used for anything?

• Which causal effects can be identified in non-linear parametric models?

We hope our algorithms will be useful to epidemiologists, econometrists, and climatologists
who investigate the four important questions asked at the beginning of the introduction.

135

8 Bibliography

[ADC96] Silvia Acid and Luis M De Campos. “An algorithm for finding minimum d-
separating sets in belief networks”. In: Proceedings of the 12th Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. 1996,
pp. 3–10.

[AIR96] Joshua D. Angrist, Guido W. Imbens, and Donald B. Rubin. “Identification of
Causal Effects Using Instrumental Variables”. In: Journal of the American Statisti-
cal Association 91.434 (1996), pp. 444–455.

[AMP97] Steen A Andersson, David Madigan, and Michael D Perlman. “On the Markov
equivalence of chain graphs, undirected graphs, and acyclic digraphs”. In: Scandi-
navian Journal of Statistics 24.1 (1997), pp. 81–102.

[AMP+97] Steen A Andersson, David Madigan, Michael D Perlman, et al. “A characterization
of Markov equivalence classes for acyclic digraphs”. In: The Annals of Statistics
25.2 (1997), pp. 505–541.

[Ang98] Joshua D. Angrist. “Estimating the Labor Market Impact of Voluntary Military
Service Using Social Security Data on Military Applicants”. In: Econometrica
66.2 (1998), pp. 249–288.

[AP08] Joshua D. Angrist and Jörn-Steffen Pischke. Mostly Harmless Econometrics: An
Empiricist’s Companion. Princeton University Press, 2008.

[Bol89] Kenneth A Bollen. Structural equations with latent variables. John Wiley & Sons,
1989.

[Bon+18] Stephan Bongers, Jonas Peters, Bernhard Schölkopf, and Joris M. Mooij. “The-
oretical Aspects of Cyclic Structural Causal Models”. In: arXiv:1611.06221v2
[stat.ME] (2018).

[BP02] Carlos Brito and Judea Pearl. “Generalized Instrumental Variables”. In: UAI. 2002,
pp. 85–93.

[Bri04] Carlos Brito. “Graphical Methods for Identification in Structural Equation Models”.
PhD Thesis. Dept. of Comp. Sc., University of California, Los Angeles, 2004.

[Bri10] Carlos Brito. “Instrumental sets”. In: Heuristics, Probability and Causality. A
Tribute to Judea Pearl (2010), pp. 295–307.

[BS95] Remco R Bouckaert and Milan Studenỳ. “Chain graphs: semantics and expressive-
ness”. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty.
Springer, 1995, pp. 69–76.

137

BIBLIOGRAPHY

[BT84] R.J. Bowden and D.A. Turkington. Instrumental variables. Cambridge University
Press, 1984.

[BTP14] Elias Barenboim, Jin Tian, and Judea Pearl. “Recovering from Selection Bias in
Causal and Statistical Inference”. In: Proceedings of the 28th AAAI Conference on
Artificial Intelligence. 2014, pp. 2410–2416.

[Chi02] David Maxwell Chickering. “Learning equivalence classes of Bayesian-network
structures”. In: The Journal of Machine Learning Research 2 (2002), pp. 445–498.

[Chi95] David Maxwell Chickering. “A transformational characterization of equivalent
Bayesian network structures”. In: Proceedings of the 11th Annual Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1995, pp. 87–98.

[Dun75] Otis Dudley Duncan. Introduction to structural equation models. Academic Press,
1975.

[EIS76] S. Even, A. Itai, and A. Shamir. “On the Complexity of Timetable and Multicom-
modity Flow Problems”. In: SIAM Journal on Computing 5.4 (1976), pp. 691–
703.

[Elw13] Felix Elwert. “Graphical Causal Models”. In: Handbook of Causal Analysis for
Social Research. Handbooks of Sociology and Social Research. Springer, 2013,
pp. 245–273.

[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, 1979.

[FDD12] Rina Foygel, Jan Draisma, and Mathias Drton. “Half-trek criterion for generic
identifiability of linear structural equation models”. In: The Annals of Statistics
40.3 (June 2012), pp. 1682–1713.

[FHW80] Steven Fortune, John Hopcroft, and James Wyllie. “The directed subgraph homeo-
morphism problem”. In: Theoretical Computer Science 10.2 (1980), pp. 111 –121.
ISSN: 0304-3975.

[Fis66] Franklin M. Fisher. The identification problem in econometrics. McGraw-Hill,
1966.

[FM17] Patrick Forré and Joris M. Mooij. “Markov Properties for Graphical Models with
Cycles and Latent Variables”. In: arXiv:1710.08775 [math.ST] (2017).

[Fry90] Morten Frydenberg. “The chain graph Markov property”. In: Scandinavian Journal
of Statistics 17 (1990), pp. 333–353.

[GJ79a] Michael Garey and David Johnson. Computers and intractability: a guide to the
theory of NP-completeness. W. H. Freeman and Company, 1979.

[GJ79b] Michael Garey and David Johnson. Computers and intractability: a guide to the
theory of NP-completeness. 1979.

[GK17] Adam Glynn and Konstantin Kashin. “Front-door Versus Back-door Adjustment
with Unmeasured Confounding: Bias Formulas for Front-door and Hybrid Adjust-
ments with Application to a Job Training Program”. In: Journal of the American
Statistical Association (2017).

[GP98] David Galles and Judea Pearl. “An axiomatic characterization of causal counter-
factuals”. In: Foundations of Science 3.1 (1998), pp. 151–182.

138

[GPSS10] Luis D. García-Puente, Sarah Spielvogel, and Seth Sullivant. “Identifying Causal
Effects with Computer Algebra”. In: Proceedings of the Twenty-Sixth Conference
on Uncertainty in Artificial Intelligence. AUAI Press. 2010, pp. 193–200.

[HPM19] Leonard Henckel, Emilija Perković, and Marloes H. Maathuis. Graphical Criteria
for Efficient Total Effect Estimation via Adjustment in Causal Linear Models. 2019.
arXiv: 1907.02435.

[HV06] Yimin Huang and Marco Valtorta. “Pearl’s calculus of intervention is complete”.
In: Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence.
AUAI Press. 2006, pp. 217–224.

[Imb14] Guido Imbens. “Instrumental Variables: An Econometrician’s Perspective”. In:
Statistical Science 29.3 (2014), pp. 323–358.

[Kal+12] Markus Kalisch, Martin Mächler, Diego Colombo, Marloes Maathuis, and Peter
Bühlmann. “Causal Inference Using Graphical Models with the R Package pcalg”.
In: Journal of Statistical Software 47.11 (2012), . ISSN: 1548-7660.

[KCB19] Daniel Kumor, Bryant Chen, and Elias Bareinboim. “Efficient Identification in
Linear Structural Causal Models with Instrumental Cutsets”. In: Advances in
Neural Information Processing Systems. 2019, pp. 12477–12486.

[Kos02] Jan T.A. Koster. “Marginalizing and conditioning in graphical models”. In: Bernoulli
8.6 (Dec. 2002), pp. 817–840.

[KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

[Lau+90] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. “Independence
properties of directed Markov fields”. In: Networks 20.5 (1990), pp. 491–505.

[LG14] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: Proceed-
ings of the 39th International Symposium on Symbolic and Algebraic Computation.
ACM. 2014, pp. 296–303.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. “Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems”. In: Journal of the
Royal Statistical Society. Series B 50.2 (1988), pp. 157–224.

[LW89] Steffen Lauritzen and Nanny Wermuth. “Graphical models for associations be-
tween variables, some of which are qualitative and some quantitative”. In: The
Annals of Statistics 17 (1989), pp. 31–57.

[MC15] Marloes H. Maathuis and Diego Colombo. “A generalized backdoor criterion”. In:
Annals of Statistics 43.3 (June 2015), pp. 1060–1088.

[Mee95] Christopher Meek. “Causal inference and causal explanation with background
knowledge”. In: Proceedings of the 11th Annual Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, 1995, pp. 403–410.

[Oei] The On-Line Encyclopedia of Integer Sequences. OEIS Foundation Inc., 2019.

[Orl13] James B. Orlin. “Max flows in O(nm) time, or better”. In: Proceedings of the 45th
annual ACM symposium on Theory of computing. ACM. 2013, pp. 765–774.

[Pap93] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.
ISBN: 0201530821.

139

https://arxiv.org/abs/1907.02435

BIBLIOGRAPHY

[Pea01] Judea Pearl. Parameter identification: A new perspective. Tech. rep. R-276. UCLA,
2001.

[Pea09] Judea Pearl. Causality. Cambridge University Press, 2009, p. 464. ISBN: 0-521-
77362-8.

[Pea93] Judea Pearl. “Comment: Graphical models, causality and intervention”. In: Statis-
tical Science 8 (1993), pp. 266–269.

[Per+15] Emilija Perković, Johannes Textor, Markus Kalisch, and Marloes Maathuis. “A
Complete Generalized Adjustment Criterion”. In: Proceedings of the 31st Confer-
ence on Uncertainty in Artificial Intelligence. AUAI Press, 2015, pp. 682–691.

[Per+16] Emilija Perković, Johannes Textor, Markus Kalisch, and Marloes Maathuis. Com-
plete graphical characterization and construction of adjustment sets in Markov
equivalence classes of ancestral graphs. Tech. rep. 1606.06904. preprint, arxiv.
org/abs/1606.06903. arXiv: 2016.

[Per+18] Emilija Perković, Johannes Textor, Markus Kalisch, and Marloes Maathuis. “Com-
plete graphical characterization and construction of adjustment sets in Markov
equivalence classes of ancestral graphs”. In: Journal of Machine Learning Re-
search 18.220 (2018), pp. 1–62.

[PKM17] Emilija Perković, Markus Kalisch, and Marloes Maathuis. “Interpreting and using
CPDAGs with background knowledge”. In: Proceedings of the 33rd Conference
on Uncertainty in Artificial Intelligence. Available at arxiv.org/abs/1707.
02171. 2017, .

[RGL08] Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash. Modern Epidemiol-
ogy. Wolters Kluwer, 2008. ISBN: 0781755646.

[RS02] Thomas Richardson and Peter Spirtes. “Ancestral Graph Markov Models”. In:
Annals of Statistics 30 (2002), pp. 927–1223.

[RTL76] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. “Algorithmic aspects of
vertex elimination on graphs”. In: SIAM J. Comput. 5.2 (1976), pp. 266–283.

[SGS01] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and
Search. 2nd. 2001. ISBN: 9780262194402.

[Sha98] Ross D. Shachter. “Bayes-Ball: The Rational Pastime”. In: Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1998,
pp. 480–487.

[SP06a] Ilya Shpitser and Judea Pearl. “Identification of Conditional Interventional Dis-
tributions”. In: Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2006, pp. 437–444.

[SP06b] Ilya Shpitser and Judea Pearl. “Identification of joint interventional distributions
in recursive semi-Markovian causal models”. In: Proceedings of the 21st National
Conference on Artificial Intelligence. Vol. 2. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999. 2006, pp. 1219–1226.

[SP78] Y. Shiloach and Y. Perl. “Finding two disjoint paths between two pairs of vertices
in a graph”. In: Journal of the ACM (JACM) 25.1 (1978), pp. 1–9.

140

arxiv.org/abs/1606.06903
arxiv.org/abs/1606.06903
arxiv.org/abs/1707.02171
arxiv.org/abs/1707.02171

[SVR10] Ilya Shpitser, Tyler VanderWeele, and James Robins. “On the Validity of Covariate
Adjustment for Estimating Causal Effects”. In: Proceedings of the 26th Conference
on Uncertainty in Artificial Intelligence. AUAI Press, 2010, pp. 527–536.

[Tak10] Ken Takata. “Space-Optimal, Backtracking Algorithms to List the Minimal Vertex
Separators of a Graph”. In: Discrete Applied Mathematics 158 (2010), pp. 1660–
1667.

[Tex+16] Johannes Textor, Benito van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz,
and George TH Ellison. “Robust causal inference using directed acyclic graphs:
the R package ‘dagitty’”. In: International Journal of Epidemiology 45.6 (2016),
pp. 1887–1894.

[TK17] Santtu Tikka and Juha Karvanen. “Identifying Causal Effects with the R Package
causaleffect”. In: Journal of Statistical Software 76.12 (2017), .

[TL11] Johannes Textor and Maciej Liśkiewicz. “Adjustment Criteria in Causal Dia-
grams: An Algorithmic Perspective”. In: Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 2011, pp. 681–688.

[TPP98] Jin Tian, Azaria Paz, and Judea Pearl. Finding Minimal D-separators. Tech. rep.
R-254. University of California, Los Angeles, 1998.

[Van09] Tyler J. VanderWeele. “On the relative nature of overadjustment and unnecessary
adjustment”. In: Epidemiology 20.4 (July 2009), pp. 496–499.

[VP90] Thomas Verma and Judea Pearl. “Equivalence and synthesis of causal models”. In:
Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence.
Elsevier, 1990, pp. 255–270.

[VP92] Thomas Verma and Judea Pearl. “An algorithm for deciding if a set of observed
independencies has a causal explanation”. In: Proceedings of the 8th Annual
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1992,
pp. 323–330.

[Wer11] Nanny Wermuth. “Probability distributions with summary graph structure”. In:
Bernoulli 17.3 (Aug. 2011), pp. 845–879.

[Wri34] Sewall Wright. “The method of path coefficients”. In: The Annals of Mathematical
Statistics 5.3 (1934), pp. 161–215.

[Zha08] Jiji Zhang. “Causal Reasoning with Ancestral Graphs”. In: Journal of Machine
Learning Research 9 (2008), pp. 1437–1474.

[ZL16a] Benito van der Zander and Maciej Liśkiewicz. “On Searching for Generalized
Instrumental Variables.” In: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics (AISTATS). 2016, pp. 1214–1222.

[ZL16b] Benito van der Zander and Maciej Liśkiewicz. “Separators and Adjustment Sets
in Markov Equivalent DAGs”. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI). 2016, pp. 3315–3321.

[ZL19] Benito van der Zander and Maciej Liśkiewicz. “Finding Minimal d-separators
in Linear Time and Applications”. In: Proceedings of the 35th Conference on
Uncertainty in Artificial Intelligence (UAI). AUAI Press, 2019.

141

BIBLIOGRAPHY

[ZLT14] Benito van der Zander, Maciej Liśkiewicz, and Johannes Textor. “Constructing
Separators and Adjustment Sets in Ancestral Graphs”. In: Proceedings of the 30th
Conference on Uncertainty in Artificial Intelligence (UAI). (IBM Best Student
Paper Award). AUAI Press, 2014, pp. 907–916.

[ZLT19] Benito van der Zander, Maciej Liśkiewicz, and Johannes Textor. “Separators
and Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic
Framework”. In: Artificial Intelligence 270 (2019), pp. 1–40.

[ZTL15] Benito van der Zander, Johannes Textor, and Maciej Liśkiewicz. “Efficiently
Finding Conditional Instruments for Causal Inference”. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI). 2015, pp. 3243–
3249.

[ZTL19] Benito van der Zander, Johannes Textor, and Maciej Liśkiewicz. “Graphical
Methods for Finding Instrumental Variables”. In: Proceedings of the 17th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization. University of
Twente, 2019, pp. 135–138.

142

A Further experimental results

Tables A.1 and A.2 in this section show the results of versions of the experiments presented in
Section 5.2 in Tables 5.1 and 5.2 in which the parameter controlling the number of unobserved
variables is set to 0.25 or 0.5.

143

FURTHER EXPERIMENTAL RESULTS

l = 2 l = 5 l = 10 l = 20
n k BC CBC CBC+ BC CBC CBC+ BC CBC CBC+ BC CBC CBC+

10 1 8235 8235 9901 4772 4772 8938 2452 2452 7443 2373 2373 7469
10 2 4307 4840 8035 528 1120 3545 0 349 1977 0 379 2004
10 3 1603 2353 5173 36 313 1168 0 96 591 0 107 594
10 5 184 823 1700 0 99 204 0 44 76 0 36 82
25 1 9306 9306 9978 7019 7019 9507 3549 3549 8141 1645 1645 6686
25 2 7312 7466 9489 2132 2490 5757 310 485 2815 24 126 1862
25 3 4863 5250 8101 416 718 2668 10 65 925 0 14 523
25 5 1466 2060 4255 10 65 449 0 2 99 0 0 38
50 1 9668 9668 9993 8075 8075 9763 4408 4408 8517 1927 1927 7024
50 2 8555 8600 9814 4013 4222 7274 639 777 3614 92 145 2145
50 5 3727 4167 6835 86 174 1034 1 1 158 0 0 81
50 7 1449 1946 3888 4 22 233 0 0 14 0 0 7

100 1 9818 9818 9997 8886 8886 9879 5158 5158 8833 2173 2173 7271
100 2 9341 9354 9951 5742 5871 8400 1013 1084 4462 167 209 2564
100 5 6215 6404 8637 443 595 2122 3 11 340 0 0 96
100 10 1453 1813 3490 0 1 78 0 0 1 0 0 1
250 1 9917 9917 10000 9559 9559 9964 6033 6033 9208 2558 2558 7691
250 2 9712 9712 9990 7840 7888 9362 1717 1764 5611 216 236 3038
250 5 8293 8343 9669 2015 2192 4569 9 18 598 0 0 158
250 15 1728 2014 3676 0 1 27 0 0 1 0 0 0
250 25 85 164 361 0 0 0 0 0 0 0 0 0
500 1 9968 9968 10000 9765 9765 9986 6684 6684 9455 2667 2667 7888
500 2 9864 9866 9997 8920 8933 9762 2304 2329 6352 303 314 3414
500 5 9162 9178 9910 4207 4343 6662 46 50 955 0 0 186
500 22 1533 1774 3148 0 0 7 0 0 0 0 0 0
500 50 0 3 10 0 0 0 0 0 0 0 0 0

1000 1 9984 9984 10000 9903 9903 9997 7266 7266 9615 2831 2831 8086
1000 2 9926 9926 10000 9490 9491 9902 3261 3278 7194 348 350 3757
1000 5 9599 9602 9984 6613 6703 8370 75 81 1486 0 0 261
1000 32 1413 1588 2801 0 0 1 0 0 0 0 0 0
1000 100 0 0 0 0 0 0 0 0 0 0 0 0
2000 1 9994 9994 10000 9945 9945 10000 7924 7924 9773 3117 3117 8322
2000 2 9963 9963 10000 9809 9812 9985 4140 4150 7842 452 456 4191
2000 5 9800 9802 9992 8273 8316 9403 210 217 2140 0 0 356
2000 45 1541 1728 2840 0 0 0 0 0 0 0 0 0
2000 200 0 0 0 0 0 0 0 0 0 0 0 0

Table A.1: Numbers of instances for P (unobserved) = 0.25 that are identifiable by use of BC,
CBC, CBC+ (as defined in Section 5.2.2). We did not run the IDC algorithm on these data due
to its high time complexity. Gray cells highlight where the CBC was able to identify at least 400
more graphs than the BC.

144

l = 2 l = 5 l = 10 l = 20
n k BC CBC CBC+ BC CBC CBC+ BC CBC CBC+ BC CBC CBC+

10 1 7418 7418 9799 3102 3102 8085 1500 1500 6515 1520 1520 6537
10 2 3289 3795 7602 303 649 3029 0 223 1910 0 251 1878
10 3 1000 1575 4512 13 138 1038 0 57 549 0 43 539
10 5 165 822 1684 0 87 220 0 39 85 0 47 76
25 1 8912 8912 9960 5107 5107 9106 1920 1920 7224 898 898 5913
25 2 6413 6555 9258 1115 1346 5056 154 249 2592 9 77 1803
25 3 3665 4060 7595 182 339 2326 6 24 880 0 7 521
25 5 820 1241 3591 1 20 419 0 2 86 0 0 40
50 1 9429 9429 9983 6206 6206 9487 2454 2454 7831 1004 1004 6414
50 2 7928 7991 9738 2141 2272 6516 260 334 3353 43 76 2127
50 5 2484 2835 6082 21 52 921 0 1 198 0 0 64
50 7 735 1041 3164 0 1 205 0 0 20 0 0 6

100 1 9725 9725 9995 7032 7032 9658 2952 2952 8281 1154 1154 6626
100 2 8858 8882 9930 3198 3285 7674 403 444 4069 74 85 2422
100 5 4828 5052 8211 89 129 1791 1 1 277 0 0 83
100 10 619 828 2793 0 0 90 0 0 2 0 0 0
250 1 9876 9876 9999 8259 8259 9908 3539 3539 8767 1314 1314 7069
250 2 9542 9546 9979 5055 5097 8865 575 591 5085 83 93 2925
250 5 7423 7498 9502 422 469 3608 1 1 613 0 0 155
250 15 711 922 2833 0 0 37 0 0 0 0 0 0
250 25 12 25 243 0 0 0 0 0 0 0 0 0
500 1 9937 9937 10000 8992 8992 9957 4038 4038 9062 1336 1336 7354
500 2 9779 9781 9998 6569 6587 9369 791 802 5748 98 100 3210
500 5 8625 8641 9852 1162 1231 5318 2 3 925 0 0 195
500 22 572 685 2245 0 0 3 0 0 0 0 0 0
500 50 0 1 3 0 0 0 0 0 0 0 0 0

1000 1 9972 9972 10000 9420 9420 9985 4487 4487 9314 1525 1525 7565
1000 2 9865 9865 9999 7872 7881 9746 1086 1094 6475 96 98 3660
1000 5 9328 9335 9957 2623 2683 7140 4 5 1461 0 0 253
1000 32 475 548 1910 0 0 0 0 0 0 0 0 0
1000 100 0 0 0 0 0 0 0 0 0 0 0 1
2000 1 9985 9985 10000 9715 9715 9992 5059 5059 9491 1693 1693 7799
2000 2 9949 9949 10000 8823 8828 9937 1500 1503 7201 122 122 3905
2000 5 9624 9626 9994 4614 4649 8529 19 19 2066 0 0 345
2000 45 467 524 1853 0 0 0 0 0 0 0 0 0
2000 200 0 0 0 0 0 0 0 0 0 0 0 0

Table A.2: Numbers of instances for P (unobserved) = 0.5 that are identifiable by use of BC,
CBC, CBC+ (as defined in Section 5.2.2). We did not run the IDC algorithm on these data due
to its high time complexity. Gray cells highlight where the CBC was able to identify at least 400
more graphs than the BC.

145

B Further Classes of Graphical
Models

In this appendix, we mention some related classes of graphical models for sake of completeness
that we have not considered further in this thesis.

Undirected graphs. An undirected graph only contains undirected edges. A probability
distribution P is compatible with an undirected graph if P factorizes as

P (v) =
1

N

∏
i=1

Pi(wi),

where {Wi} are all maximal cliques in the graph and N is a normalization constant. Variables
in an undirected graph are conditionally independent given a set Z if all paths between them are
blocked by Z, i.e., contain a node of Z. This kind of separation is simpler than d-separation,
which can be seen as an advantage of undirected graphs.

Partial ancestral graphs (PAGs). Like a CPDAG encodes a Markov equivalence class of
DAGs, a PAG encodes a Markov equivalence class of MAGs [Zha08]. PAGs can contain four
different types of edges→,↔, ◦−−◦ and ◦→. Each edge is considered to be marked by either an
arrowhead (>), tail (−), or circle (◦) on both sides. An arrowhead (tail) means the corresponding
edge in each graph of the Markov equivalence class has an arrowhead (tail) at this side, while a
circle means both arrowheads and tails occur1.

Maximal PDAGs. Maximal PDAGs represent a subset of a Markov equivalence class of
DAGs using directed and undirected edges [PKM17]. Maximal PDAGs have the same purpose
as (restricted) chain graphs, but are more general because they allow semi-directed cycles, so
they can represent subsets that cannot be represented by chain graphs. However, semi-directed
cycles make it impossible to decide conditional independence relations with d-separation, so
[PKM17] define more complex separation rules, which lead to slower algorithms. Particularly,
the fastest known method of finding non-causal definite status paths in a maximal PDAG is
based on constructing a represented DAG in O(nm), while we can find such a path in RCGs in
O(n+m) (see Chapter 4).

1With three possible marks on two sides, PAGs could have nine different types of edges. Nevertheless, −−,
◦−−, and −−◦ do not occur because [Zha08] only considers MAGs without undirected edges. ← and←◦ are not
distinguished from their mirrored counterparts.

147

FURTHER CLASSES OF GRAPHICAL MODELS

Summary graphs. Summary graphs allow→, −−, and -- edges [Wer11], whereby -- edges
are equivalent to↔ edges of AGs, so separation in summary graphs behaves identical to m-
separation of AGs [RS02]. Summary graphs do not allow directed cycles, but allow both a→
and -- edge between the same pair of nodes.

MC graphs. Like AGs, MC graphs were developed to represent the marginalization (M) and
conditioning (C) of a DAG [Kos02]. MC graphs allow edges→, −−, and↔. Between a pair of
nodes any combination of these edges might occur (i.e., up to four edges between a pair), and
a node can have an undirected edge to itself as a self-loop. Nevertheless, d-separation in MC
graphs is identical to m-separation in AGs [RS02].

MC graphs are more general than summary graphs which are more general than AGs, i.e.,
AGs ⊂ summary graphs ⊂ MC graphs. However, this makes them them too large for their
purpose of representing marginalization and conditioning [RS02]. There exist MC graphs
that cannot be obtained by marginalizing and conditioning a directed (cyclic or acyclic) graph
[Kos02; RS02], so their statistic interpretation is dubious.

Inducing path graphs (IPGs). Inducing path graphs extend DAGs with bidirected edges
representing latent nodes [VP90; SGS01, chapter 2 and 6]. [Zha08] shows that IPGs can be
characterized as a mixed graph with edges→ and↔ which contain no directed cycle and are
maximal, so IPGs are a slight generalization of MAGs permitting cycles V1 ↔ V2

∗→ Vk → V1.

Partially oriented inducing path graphs (POIPGs). Partially oriented inducing path graphs
represent a Markov equivalent class of IPGs like PAGs represent a class of DAGs [SGS01,
chapter 2 and 6]. They allow the four possible edge types of PAGs →, ↔, ◦−−◦, and ◦→.
Additionally, nodes can be marked as being non-colliders on every possible path in each
represented IPG.

[Zha08] argues that MAGs and PAGs provide more qualitative causal information than
IPGs and POIPGs since MAGs are more restricted than IPGs, so the Markov equivalence class
contains fewer graphs and a PAG contains more edge marks than a POIPG.

Directed (cyclic) graphs. A serious limitation of DAG models is that they do not allow cycles
or reciprocal interactions between variables 2. When cycles are allowed in the directed graph,
d-separation still corresponds to conditional independence relations in many models, but the
probability distribution can no longer be factorized and there is no well-developed general theory
of cyclic causal graphical models [SGS01, Section 12.1.2]. Nevertheless, such a theory is under
active research [FM17; Bon+18].

2Even though cycles are so important in nature that the study of feedback loops has created an entire scientific
field: cybernetics.

148

C Essential Paths and Nearest
Separators

In [ZTL15], we have given a greedy O(n3) algorithm to find nearest separators using the moral
graph. Since that runtime is relatively slow, we have searched for faster approaches. The
first idea was to remove the need of the moral graph, which yields a O(n(n+m)) algorithm.
Although that algorithm is obsolete after we have discovered our O(n + m) algorithm in
Proposition 6.13 [ZL19], we describe it in this appendix since it provides new insight into
nearest separators.

Formally, we start by analyzing the paths between Y and Z that need to be blocked in order
to d-separate Y and Z, paths which we will call essential paths:

Definition C.1. Given nodes Y and Z in V, we call a tuple of paths (πi) = (π1, . . . , πk) with
nodes W = (W1, . . . ,Wk) an essential path bundle relative to Y and Z if essential path bundle

• Each essential path πi has Y as a start node and Z as an end node,

• Wi is the first non-collider on πi in O, and

• πi is active given {W1, . . . ,Wi−1}.

We call the (W1, . . . ,Wk) the nearest nodes of (πi). The essential path bundle can be empty, nearest nodes

so () with nearest nodes ∅ is an essential path bundle relative to all node pairs. However, the
nearest nodes need to exist on the paths; thus, an essential path bundle must not contain paths
that have no observed non-collider like Y → Z, Y →← Z, or Y ← U → Z with U /∈ O. No
path can occur more than once in the bundle because if there was a πi = πi′ with i < i′, then
Wi would block πi′ .

Since we are interested in nearest separators, we will focus on the study of separating
essential path bundles.

Definition C.2. Given nodes Y and Z in V, we call a tuple of paths (πi) = (π1, . . . , πk) with
nearest nodes W a separating essential path bundle relative to Y and Z if separating essential path

bundle

• (πi) is an essential path bundle relative to Y and Z, and

• W d-separates Y and Z.

Separating essential path bundles are also maximal in the sense that no path with observed
non-colliders can be added to the tuple. Generally an essential path bundle is maximal if it
is either separating or none of the paths active given the nearest nodes contains an observed

149

ESSENTIAL PATHS AND NEAREST SEPARATORS

non-collider. It is not hard to see that any maximal essential path bundle relative to Y and Z is
separating if and only if Y and Z are d-separable.

A well-known property of separators is that nodes that can be d-separated by any set can
also be d-separated by subsets of their ancestors. A similar property holds for essential path
bundles:

Lemma C.3. Given an essential path bundle (πi) relative to Y and Z, every node on a path πi
is in An(Y ∪ Z).

Proof. All nodes on a path opened by a set W′ are ancestors of the start/end nodes or of W′ as
shown in Lemma 3.13. π1 is active given ∅, so it contains only ancestors of Y and Z. All other
paths πi only contains those ancestors and ancestors of an earlier path.

Lemma C.4. If there exists an essential path bundle relative to Y and Z that contains a
descendant of Y other than Y itself, then

• Z is a descendant of Y , and

• Every set separating Y and Z contains a descendant of Y .

Proof. Let V be the descendant in De(Y) \ Y . From Lemma C.3, we know V ∈ An(Y, Z) and
in a DAG a node cannot be a both descendant and ancestor, so V is an ancestor of Z. Hence,
there is a causal path from Y to V and a causal path from V to Z. Thus, there exists a causal
path from Y to Z that can only be blocked by a descendant of Y , and every separating set must
contain a descendant of Y .

The nearest nodes of a separating essential path bundle form a nearest separator as the
following lemma shows:

Lemma C.5. Let (πi) be an essential path bundle relative to Y and Z, and let Wi be one of its
nearest nodes W = (W1, . . . ,Wk). If a set W′ ⊆ O \ {Wi, Y, Z} does not block every path π
between Wi and Z, W′ does not d-separate Y and Z.

Proof. No node on πi[Y ∗∼ Wi] besides colliders, Y , and Wi is observed, so W′ contains no
non-collider of πi[Y ∗∼ Wi].

Every collider on πi[Y ∗∼ Wi] as well as the node Wi is an ancestor of Y or Z due to
Lemma C.3. Thus, according to Lemma 3.12, W′ does not d-separate Y and Z.

On the other hand a set can be a nearest separator without consisting of nearest nodes of an
essential path bundle. A simple example is the DAG Y →W Z, where Z is not adjacent to
any node and W = {W} is a nearest separator, because Y and Z are always d-separated and
X in condition (ii) can only be Z, which is always d-connected to itself. Yet, W cannot belong
to any essential path bundle.

A separating essential path bundle does not yield a minimal nearest separator. For example,
in a DAG

Y

V1

V2 Z

150

the paths (Y → V1 → V2 → Z, Y → V2 → Z) form a separating essential path bundle with
nearest nodes {V1, V2}. A minimal nearest separator can be obtained by the separating essential
path bundle (Y → V2 → Z) with nearest nodes {V2}.

The theory of essential path bundles yields directly the following algorithm to compute
nearest separators:

function FIND-NEAREST-SEPARATOR-SLOW(G, Y, Z)
W := ∅
while ∃π := a path from Y to Z active given W do

if ∃V ∈ π: V ∈ O \ {Y, Z} and V is not a collider on π then
W := W ∪ {first such V on π}

else
return ⊥

return W

Proposition C.6. The algorithm FIND-NEAREST-SEPARATOR-SLOW returns a nearest sep-
arator W ⊆ An(Y ∪ Z) if Y and Z are separable in G; otherwise it returns ⊥. Moreover,
if Y and Z can be separated in G by a set that does not contain a descendant of Y , then
W ⊆ An(Y ∪ Z) \De(Y). The runtime of the algorithm is O(n(n+m)).

Proof. If the algorithm returns a set W, it fulfills (Z ⊥⊥ Y |W)G because it only returns a set
if the while loop finds no d-path between Y and Z. All paths found by the algorithm form a
separating essential path bundle, and the set W yields from their nearest nodes. So the algorithm
returns a nearest separator. From Lemma C.3 and Lemma C.4, it follows that W ⊆ An(Y ∪ Z)
respectively W ⊆ An(Y ∪ Z) \De(Y).

If Y and Z are d-separable and the algorithm does not return a set, there exists a path π
whose colliders have been opened by W and that does not contain an observed non-collider. Yet
there is a separator W′ that does not open all colliders on π. Let C be the last collider unopened
by W′ and Wi ∈W the node opening it. Then the path Wi

∗← π[C ∗∼ Z] is open given W′,
so according to Lemma C.5, W′ is not a separator.

The runtime is O(n(n+m)) since a d-path can be found in O(m) steps and at most O(n)
nodes can be added to W.

151

D Listings

List of Tables

3.1 Summary of separation algorithms . 20
3.2 Comparison of our algorithms to previous algorithms 21

4.1 Summary of adjustment set algorithms . 46
4.2 Similarities between CBC and BC . 67
4.3 Summary of our results regarding adjustments and related works 69

5.1 Results of empirical analysis: P (unobserved) = 0 78
5.2 Results of empirical analysis: P (unobserved) = 0.75 79
5.3 Results of empirical analysis: Average runtimes 84
5.4 Results of empirical analysis of MAGs: P (unobserved) = 0 87
5.5 Results of empirical analysis of MAGs: P (unobserved) = 0.75 88
5.6 Results of empirical analysis of MAGs: Average runtimes 89
5.7 Results of the empirical analysis of CPDAGs: P (unobserved) = 0 91
5.8 Results of the empirical analysis of CPDAGs: P (unobserved) = 0.75 92
5.9 Results of the empirical analysis of CPDAGs: Average runtimes 93

6.1 Overview about instrumental variables . 99
6.2 Summary of instrumental variable algorithms 104
6.3 Algorithms and complexity of instrumental sets 120

A.1 Results of empirical analysis: P (unobserved) = 0.25 144
A.2 Results of empirical analysis: P (unobserved) = 0.5 145

153

LISTINGS

List of Figures

1.1 Example of a causal DAG and adjustment . 2
1.2 Reading order of this thesis . 8

2.1 Inclusion relationships between classes of causal graphs 12
2.2 Example of a chain graph . 14
2.3 Strongly protected edges . 14
2.4 Example of an ancestral graph . 15
2.5 Example of causal effect identification . 17

3.1 Examples of restricted chain graphs . 22
3.2 Minimal separator in a moral graph . 27
3.3 Expanded rules for Bayes-Ball in AGs and RCGs 30
3.4 Expanded rules for Bayes-Ball in AGs and RCGs for M-minimal separators . . 35
3.5 NP-completeness of strongly minimal d-separating sets 37
3.6 Removing fixed nodes from the augmented graph 40

4.1 Example of the proper back-door graph and an adjustment set in a DAG 48
4.2 Example of adjustment sets in MAGs . 54
4.5 Example of an adjustment set in a chain graph and represented DAGs 57
4.6 Comparing the proper back-door graph of a chain graph and a represented DAG 57
4.7 Example of the proper back-door graph and an adjustment set in a chain graph . 61
4.8 Example of a DAG in which the CBC surpasses the BC 66

5.1 Examples of DAGs in which the causal effect can be identified with plain formulas 72
5.2 Random DAGs generated during empirical analysis 77
5.3 Results of empirical analysis: Heatmap comparing CBC and CBC+ 81
5.4 Results of empirical analysis: P (unobserved) = 0.75, curves of fixed n 82
5.5 Results of empirical analysis: P (unobserved) = 0.75, curves of fixed l 82
5.6 Results of empirical analysis: Average runtimes 83
5.7 Randomly sampled DAG and corresponding MAG 86
5.8 Results of the empirical analysis of MAGs . 87
5.9 Results of the empirical analysis of CPDAGs 90
5.10 Count of DAGs . 94

6.1 Example of instrumental variables . 96
6.2 Example of nearest separators . 104
6.3 Nearest separator relative to unknown IV . 109
6.4 NP-completeness of testing conditional instrumental variables 111
6.5 Example of simple instrumental sets . 117
6.6 Example of representing a causal DAG as a flow graph 121
6.7 NP-completeness of generalized instrumental sets 126

154

List of Algorithms

REACHABLE . 28
AnG . 28
DeG . 28
pAnG . 28
pDeG . 28
TESTSEP . 29
FINDSEP . 30
LISTSEP . 31
TESTMINSEP . 34
FINDMINSEP . 36
LISTMINSEP . 40
FINDMINCOSTSEP . 41
CONVERT-CG-TO-RCG . 44
TESTADJUSTMENTAMENABILITY . 64
FIND-NEAREST-SEPARATOR-SLOW . 107
FIND-NEAREST-SEPARATOR . 107
WITNESS-ANCESTRAL-INSTRUMENT . 108
FIND-CONDITIONAL-INSTRUMENT . 108
WITNESS-ANCESTRAL-INSTRUMENT-TOTAL-EFFECT 109
FIND-INSTRUMENT-TOTAL-EFFECT . 110
ENUMERATE-ANCESTRAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS 114
FIND-ANCESTRAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS 114
ENUMERATE-CONDITIONAL-INSTRUMENTS-WITH-OBSERVABLE-PARENTS . . . 115
FIND-CONDITIONAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS 116
TEST-CONDITIONAL-INSTRUMENT-WITH-OBSERVABLE-PARENTS 116
TEST-SIMPLE-COND-IVS . 123
FIND-SIMPLE-COND-IVS . 124
TEST-SIMPLE-IVS . 124
FIND-SIMPLE-IVS . 125
TEST-GENERAL-IVS . 129
ADD-ARC . 131
FIND-GENERAL-IVS . 132

155

INDEX

Index

AC, 47
active, 11
active conditional instrument, 103
active instrumental variable, 103
adjacent, 9
adjusting, 16
adjustment amenable, 50
adjustment criterion, 47
adjustment set, 17, 46
AG, 14
AIV, 101
almost definite non-collider, 23
almost definite status, 23
ancestor, 10
ancestral graph, 14
ancestral instrument, 101
ancestral instrumental variable, 101
anterior, 10
augmented graph, 27

back-door criterion, 17, 66
back-door graph, 48, 54, 57
Bayes’ rule, 9
Bayesian network, 12
BC, 17, 66
BFS, 27
biasing walk, 10
bidirected edge, 9
bidirectionally connected component, 11
blocked, 11
breadth-first search, 27

canonical DAG, 15
causal DAG, 12
causal effect, 16
causal walk, 10
CBC, 48, 54, 57, 61
CG, 13
chain component, 13
chain graph, 13
child, 10
chordal, 11
CIV, 100
collider, 11
collider connected, 11

compatible, 12
complete, 11
completed partially directed acyclic graph,

13
conditional instrument, 96, 100
conditional instrumental variable, 96, 100
conditional probability, 9
conditionally independent, 9
conditioning, 9
configuration, 10
connected, 11
connected component, 11
consistent DAG extension, 13
constructive back-door criterion, 48, 54, 57,

61
correlation coefficient, 97
CPDAG, 13
cycle, 10

d-connected, 11
d-separable, 11
d-separated, 11
d-separates, 11
DAG, 12
definite non-collider, 13, 23
definite status, 13, 23
degree, 9
descendant, 10
direct causal effect, 16, 95, 97
directed acyclic graph, 12
directed edge, 9
directed graph, 12
directed walk, 10
do-calculus, 17
do-operator, 16

edges, 9
end node, 10
endogenous, 9
error terms, 95, 97
exogenous, 9

flow graph, 120
fork, 11

generalized instrumental set, 118

156

generic solutions, 98

I-minimal, 32
I-minimum, 32
identifiable, 16, 96
identified, 96, 100
incompatible paths, 117
induced subgraph, 11
inducing Z-trail, 51
instrument, 96
instrument relative to the total effect, 100
instrumental set, 116
instrumental variable, 96, 100
instrumentalization problem, 110
instrumentalizes, 96, 100
internal node, 10
intervention, 16
invisible, 50
IV, 96, 100

latent, 9
linear equation model, 97

m-connected, 11
M-minimal, 31
M-minimum, 32
m-separated, 11
MAG, 15
marginalization, 9
Markov equivalent, 13
maximal ancestral graph, 15
measured, 9
minimal, 19, 31
minimum, 19, 31
mixed graph, 9
moral graph, 27
moralization, 27, 39

nearest separator, 104
neighbors, 9
nodes, 9
non-causal walk, 10
non-collider, 11

observed, 9

PAG, 145
parameter, 95

parent, 10
partial ancestral graph, 145
path, 10
path coefficient, 95
plain formula, 72
possible ancestor, 10
possible descendant, 10
possibly directed, 10
post-intervention distribution, 16
probability distribution, 9
proper, 10
proper back-door graph, 48, 54, 57

RCG, 14
reachability, 27
regression coefficient, 97
restricted chain graph, 14

SEM, 16, 95
semi-directed, 10
semi-Markovian model, 15
separable, 11
separated, 11
separator, 11
simple conditional instrumental set, 118
simple instrumental set, 117
skeleton, 11
start node, 10
strongly protected, 13
strongly-minimal, 32
strongly-minimum, 32
structural equation model, 16, 95
subgraph, 10
subpath, 10
subwalk, 10

undirected edge, 9
unobserved, 9

v-structure, 11
visible, 50

walk, 9
weakly-minimal, 32
weakly-minimum, 32

X-loop-free, 66

157

E Curriculum Vitae

PERSÖNLICHE DATEN

Benito van der Zander
geboren 17.06.1989 in Düsseldorf

WISSENSCHAFTLICHE AUSBILDUNG

Rheinisch-Westfälische Technische Hochschule Aachen

Master of Science in Informatik, Dezember, 2011

Note: 1.5
Thema der Arbeit: “Open Street SLAM: Combining Visual SLAM with Cadastral Maps”

Heinrich-Heine-Universität Düsseldorf

Bachelor of Science in Informatik, Oktober, 2009

Note: 1.5 mit Auszeichnung
Thema der Arbeit: “Eigenschaften eines Algorithmus zur Zuordnung von nicht eindeuti-
gen Sende- und Empfangsereignissen in Ereignisprotokollen”

Studium erfolgte parallel zur Schule ab 2002 (mit einer Vorlesung je Semester)

ARBEITSERFAHRUNGEN

Universität zu Lübeck

Wissenschaftlicher Mitarbeiter seit 2016
Forschung an DFG-Projekt “Kausalität”.

Wissenschaftliche Hilfskraft mit Abschluss 2013 – 2016

Rheinisch-Westfälische Technische Hochschule Aachen

Wissenschaftliche Hilfskraft Anfang 2012

Wissenschaftliche Hilfskraft 2010 – 2011

159

CURRICULUM VITAE

Heinrich-Heine-Universität Düsseldorf

Wissenschaftliche Hilfskraft 2008 – 2009

Bundeswettbewerb Informatik 2008 – 2016

Halbjährliche Bewertung von Einsendungen

AUSZEICHNUNGEN

Ausgezeichnete Publikationen
IBM Best Student Paper Award, zur Publikation “Constructing Separators and Adjustment
Sets in Ancestral Graphs” (UAI 2014, [ZLT14]) 2014
Balisage First Place Student Award zur Publikation “Extending XQuery with pattern matching
over XML, HTML and JSON, and its usage for data mining” (Balisage 2014) 2014

Stipendien
Lübecker Graduate School 2013 – 2016
Studienstiftung des deutschen Volkes 2008 – 2011

Central European Olympiad of Informatics 2006 – 2008
2008: Silber Medaille
2007: Silber Medaille
2006: Bronze Medaille

Baltic Olympiad of Informatics 2006 – 2008
2008: Bronze Medaille
2007: Silber Medaille
2006: Bronze Medaille

Bundeswettbewerb Informatik 2002 – 2006
2006: Bundessieger und Sonderpreise: “beste Einzelidee” und “beste Gruppenleistung”
2005: Preisträger und Sonderpreis: “beste Einzelidee”
2004: Preisträger und Sonderpreise: “beste Einzelidee” und “bester jüngster Teilnehmer”

Jugend Forscht / Schüler Experimentieren 2001, 2008
2008: Teilnahme mit “VideLibri”
2001: Sonderpreis Software-System-Technik für ein Spiel; Teilnahme mit Matheprogramm

PUBLIKATIONEN (INKLUSIVE KOAUTORSCHAFT)

Benito van der Zander and Maciej Liśkiewicz, “Finding Minimal d-separators in Linear
Time and Applications” in Proceedings of the 35th Conference on Uncertainty in Artificial
Intelligence (UAI 2019), Tel Aviv, Israel, 2019 , AUAI Press, 2019

Benito van der Zander, Johannes Textor, and Maciej Liśkiewicz, “Graphical Methods for
Finding Instrumental Variables” in Proceedings of the 17th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization (CTW 2019), Twente, Netherlands, 2019 , pp. 135–
138, University of Twente, 2019

160

Benito van der Zander, Maciej Liśkiewicz, and Johannes Textor, “Separators and Adjustment
Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework” in Artificial
Intelligence 270 (2019) , pp. 1–40

Johannes Textor, Benito van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz, and George
TH Ellison, “Robust causal inference using directed acyclic graphs: the R package ‘dagitty’”
in International Journal of Epidemiology 45.6 (2016) , pp. 1887–1894

Benito van der Zander, Maciej Liśkiewicz, “On Searching for Generalized Instrumental
Variables” in Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS 2016), Cadiz, Spain, May 9–11, 2016 , pp. 1214–1222, JMLR
Proceedings, 2016

Benito van der Zander, Maciej Liśkiewicz, “Separators and Adjustment Sets in Markov
Equivalent DAGs” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence (AAAI 2016), Phoenix, Arizona, USA, February 12–17, 2016 , pp. 3315–3321 , AAAI
Press, 2016

Benito van der Zander, Johannes Textor, Maciej Liśkiewicz, “Efficiently Finding Conditional
Instruments for Causal Inference” in Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25–31, 2015 , pp.
3243–3249, AAAI Press / International Joint Conferences on Artificial Intelligence, 2015

Benito van der Zander, “Extending XQuery with pattern matching over XML, HTML and
JSON, and its usage for data mining” in Proceedings of Balisage: The Markup Conference ,
North Bethesda, USA, August 2-5 ,, 2014 (Balisage First Place Student Award)

Benito van der Zander, Johannes Textor, Maciej Liśkiewicz, “Constructing Separators and
Adjustment Sets in Ancestral Graphs” in Proceedings of the 30th Conference on Uncertainty
in Artificial Intelligence (UAI 2014 (IBM Best Student Paper Award)), Quebec, Canada,
pp. 907–916, AUAI Press, 2014

Georgios Floros, Benito van der Zander, Bastian Leibe, “OpenStreetSLAM: Global Vehicle
Localization Using OpenStreetMaps” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 6–10, 2013 , pp. 1054–
1059, IEEE, 2013

Dennis Mitzel, Georgios Floros, Patrick Sudowe, Benito van der Zander, Bastian Leibe, “Real
Time Vision Based Multi-Person Tracking for Mobile Robotics and Intelligent Vehicles” in
Proceedings of the 4th International Conference on Intelligent Robotics and Applications
(ICIRA (2) 2011), Aachen, Germany, Dec 6–9, 2011 , pp. 105–115, Springer, 2011

Benito van der Zander, Egon Wanke, Wolfgang Kieß, Björn Scheuermann, “Brief announce-
ment: complexity and solution of the send-receive correlation problem” in Proceedings of
the Twenty-Ninth Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2010), Zurich, Switzerland, July 25–28, 2010 , pp. 122–123, ACM

161

CURRICULUM VITAE

OPEN-SOURCE SOFTWARE PROJEKTE

DAGitty (http://dagitty.net) seit 2015
Implementierung der Algorithmen meiner Dissertation in DAGitty, einer Webseite und einem
R-Paket.

Xidel (http://xidel.sourceforge.net) seit 2012
Ein XQuery-Interpreter für Data Mining von Webseiten, verfügbar als Kommandozeilenpro-
gramm, Webservice und Library. Xidel implementiert den W3C XPath/XQuery 3.1-Standard,
eine funktionale Programmiersprache mit fast 200 Standardfunktionen und 50 primitiven Typen.
Xidel hat zusätzliche Erweiterungen für EXPath, JSONiq, CSS-Selektoren und XML/HTML-
Patternmatching.

TeXstudio (http://www.texstudio.org) seit 2009
Ein LATEX-Editor mit interaktiver Rechtschreib/Grammatikprüfung für Windows, Linux und
macOS, entwickelt in C++ und Qt. Ursprünglich von mir als Fork von Texmaker gegründet,
ist es nun ein unabhängiges Projekt mit über einer Millionen Downloads. Ausgezeichnet als
SourceForges “Project of the Month” in Oktober 2015 und August 2013.

VideLibri (http://www.videlibri.de) seit 2006
VideLibri greift auf die Webkataloge von über 300 Bibliotheken zu, um die vom Benutzer
ausgeliehenen Bücher anzuzeigen, die Leihfrist zu verlängern und im Katalog zu suchen. Es
läuft auf Windows, Linux und Android. Zum Auslesen der Webseiten ohne verfügbare API
wurde mittels XQuery Schnittstellen zu 20 zueinander inkompatiblen Katalogsystemen erstellt.

162

	Introduction
	Publications
	Structure of this Thesis

	Preliminaries: Causal Graphical Models
	General Background and Notation
	Classes of Graphical Models
	Do-operator and Causal Effects

	Separation: An Algorithmic Framework
	Properties of Walks and Paths
	Almost Definite Status
	Equivalences
	Augmentation and Moralization

	Algorithms for Separators
	Reachability Algorithm
	Testing Separators
	Finding Separators
	Enumerating All Separators

	Algorithms for Minimal and Minimum Separators
	Weak Minimality versus Strong Minimality
	Properties of Minimal Separators
	Testing Minimal Separators
	Finding Weakly-Minimal Separators
	The Hardness of Strong-Minimality
	Augmentation and Moralization
	Enumerating Weakly-Minimal Separators
	Finding Minimum Separators

	Relating Chain Graphs and Restricted Chain Graphs
	Recognizing Restricted Chain Graphs
	Reducing a Chain Graph to a Restricted Chain Graph

	Discussion

	Identification via Covariate Adjustment
	Preliminaries
	Adjustment in DAGs
	Adjustment in MAGs
	Adjustment Amenability
	Auxiliary Lemmas
	Adjustment Criterion for MAGs
	The Class of the Back-Door Graph

	Adjustment in RCGs
	Properties of the Proper Back-Door Graph

	Adjustment in CGs
	The Final CBC
	Variations of the CBC
	The Algorithmic Framework
	Testing Adjustment Amenability
	Testing Adjustments and Minimal Adjustments
	Finding Adjustments and Minimal Adjustments

	Discussion and Related Work

	A Comparison of Non-Parametric Identification Methods
	Beyond Covariate Adjustment in DAGs
	Identification by plain formulas
	Identification by generalized parent adjustment
	Identification when X and Y partition V

	Empirical Analysis of Identifiability by Adjustment in DAGs
	Instance Generation
	Algorithms
	Results

	Empirical Analysis of Identifiability by Adjustment in MAGs
	Empirical Analysis of Identifiability by Adjustment in RCGs
	Discussion

	Identification via Instrumental Variables in SEMs
	Preliminaries
	Single Instrumental Variables
	Instrumental Variables
	Conditional Instruments
	Instruments Relative to the Total Effect
	Ancestral Instruments
	Active Instruments

	Algorithmics of Instrumental Variables
	Nearest Separators
	Finding ancestral and conditional instrumental variables
	Instrumental Variables Relative to the Total Effect
	Instrumentalization is NP-hard in general
	Testing instruments in completely unobserved graphs
	Finding instruments in observed graphs
	Enumerating Instrumental Variables

	Instrumental Sets
	Simple Instrumental Sets
	Generalized Instrumental Sets
	Simple Conditional Instrumental Sets
	Singleton Sets as Instrumental Variables

	Algorithmics of Instrumental Sets
	Finding Incompatible Paths via Flows
	Testing and Finding Simple Conditional Instruments
	Testing and Finding Simple Instruments
	Hardness of Testing Generalized Instrumental Sets
	Testing and Finding Generalized Instrumental Sets with a Pebble Game

	Discussion

	Discussion
	Bibliography
	Further experimental results
	Further Classes of Graphical Models
	Essential Paths and Nearest Separators
	Listings
	List of Tables
	List of Figures
	List of Algorithms
	Index

	Curriculum Vitae

